- $5-\Omega$ Switch Connection Between Two Ports
- TTL-Compatible Input and Output Levels
- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages


## description

The SN74CBT6800 provides ten bits of highspeed TTL-compatible bus switching. The low on-state resistance of the switch allows bidirectional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.
The SN74CBT6800 is organized as one 10 -bit switch with a single enable $(\overline{\mathrm{ON}})$ input. When $\overline{\mathrm{ON}}$ is low, the switch is on and port $A$ is connected to port $B$. When $\overline{O N}$ is high, the switch between port $A$ and port $B$ is open and the B port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.
The SN74CBT6800 is available in Tl's shrink small-outline (DB) and thin shrink small-outline (PW) packages, which provide the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN74CBT6800 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

| $\overline{\mathrm{ON}}$ | B1-B10 | FUNCTION |
| :---: | :---: | :---: |
| L | A1-A10 | Connect |
| H | BIASV | Precharge |

## logic diagram


absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

Bias voltage range, BIASV ............................................................................ 0.5 V to 6 V
Input voltage range, $\mathrm{V}_{\mathrm{I}}$ (see Note 1) ............................................................... -0.5 V to 7 V
Continuous channel current ........................................................................... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . 0.6 W
DW package .....................1.7 W
PW package ...................... 0.7 W

$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data Book.
recommended operating conditions

|  |  | MIN | MAX |
| :--- | :--- | ---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | UnPply voltage | 4 | 5.5 |
| BIASV | Supply voltage | 1.3 | $\mathrm{~V}_{\mathrm{CC}}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | V |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-level input voltage | 2 |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Operating free-air temperature | V |  |

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  |  | MIN | TYPt | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND |  |  |  | $\pm 5$ | $\mu \mathrm{A}$ |
| Io |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | BIASV $=2.4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0$ | 0.25 |  |  | mA |
| ICC |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{I} \mathrm{O}=0$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND |  |  | 50 | $\mu \mathrm{A}$ |
| $\Delta^{1} \mathrm{CC}^{\ddagger}$ | Control pins | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, | One input at 2.7 V , | Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 2.5 | mA |
| $\mathrm{C}_{\mathrm{i}}$ | Control pins | $\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0 |  |  |  | 3.5 |  | pF |
| $\mathrm{C}_{\text {O(OFF) }}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 , | Switch off |  |  | 4.5 |  | pF |
| ron§ |  | $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ |  | 14 | 20 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{l}}=0$, | $I_{1}=64 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=0$, | $\mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA}$ |  | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{I}}=15 \mathrm{~mA}$ |  | 10 | 15 |  |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
$\S$ Measured by the voltage drop between the $A$ and $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two ( A or B ) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | TEST CONDITIONS | FROM (INPUT) | TO (OUTPUT) | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX |  |
| tpd ${ }^{\text {I }}$ |  | A or B | B or A |  | 0.25 |  | 0.25 | ns |
| tPZH | BIASV = GND | $\overline{\mathrm{ON}}$ | A or B | 3.1 | 8.1 |  | 9.1 | ns |
| tpZL | BIASV $=3 \mathrm{~V}$ |  |  | 3.6 | 8.6 |  | 9.6 |  |
| tPHZ | BIASV = GND | $\overline{\mathrm{ON}}$ | A or B | 2.7 | 6.1 |  | 5.9 | ns |
| tpLZ | BIASV $=3 \mathrm{~V}$ |  |  | 3 | 7.3 |  | 6.4 |  |

TThis parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

| TEST | S1 |
| :---: | :---: |
| $\mathbf{t}_{\text {pd }}$ | Open |
| tPLZ $^{\prime} / \mathrm{tPZL}$ | 7 V |
| $\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\mathrm{PZH}}$ | Open |



VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. $C_{L}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tphZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tpZL and tpZH are the same as ten.
G. $\mathrm{tPLH}^{\text {and }} \mathrm{tPHL}$ are the same as $\mathrm{t}_{\mathrm{pd}}$.

Figure 1. Load Circuit and Voltage Waveforms

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

