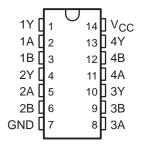
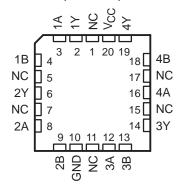
SCAS280I - JANUARY 1993 - REVISED OCTOBER 1998

- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- Typical V_{OLP} (Output Ground Bounce) $< 0.8 \text{ V at V}_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Inputs Accept Voltages to 5.5 V
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per **JESD 17**
- **Package Options Include Plastic** Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W), Chip Carriers (FK), and DIPs (J)

description


The SN54LVC02A quadruple 2-input positive-NOR gate is designed for 2.7-V to 3.6-V V_{CC} operation and the SN74LVC02A quadruple 2-input positive-NOR gate is designed for 1.65-V to 3.6-V V_{CC} operation.

The 'LVC02A devices perform the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \bullet \overline{B}$ in positive logic.


Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

The SN54LVC02A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVC02A is characterized for operation from -40°C to 85°C.

SN54LVC02A . . . J OR W PACKAGE SN74LVC02A . . . D. DB. OR PW PACKAGE (TOP VIEW)

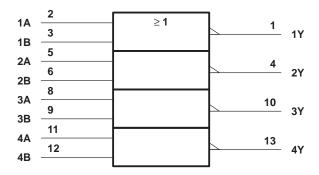
SN54LVC02A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Y
Н	Χ	L
Х	Н	L
L	L	Н

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated

SN54LVC02A, SN74LVC02A QUADRUPLE 2-INPUT POSITIVE-NOR GATES

SCAS280I – JANUARY 1993 – REVISED OCTOBER 1998

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, PW, and W packages.

logic diagram, each gate (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply-voltage range, V _{CC}	
Input-voltage range, V _I (see Note 1)	
Output-voltage range, VO (see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): D package	27°C/W
DB package	ge 158°C/W
PW packa	ge 170°C/W
Storage temperature range, T _{stq}	

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SCAS280I - JANUARY 1993 - REVISED OCTOBER 1998

recommended operating conditions (see Note 4)

			SN54L	VC02A	SN74L	VC02A	UNIT	
			MIN	MAX	MIN	MAX	I UNII	
Vac	Supply voltage	Operating	2	3.6	1.65	3.6	V	
Vcc	Supply voltage	Data retention only	1.5		1.5]	
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$			0.65 × V _{CC}			
ViH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$			1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2			
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$				0.35 × V _{CC}		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$				0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		0.8		
٧ _I	Input voltage		0	5.5	0	5.5	V	
٧o	Output voltage		0	Vcc	0	Vcс	V	
		V _{CC} = 1.65 V				-4	mA	
la	High lovel output outropt	V _{CC} = 2.3 V				-8		
ЮН	High-level output current	V _{CC} = 2.7 V		-12		-12		
		V _{CC} = 3 V		-24		-24		
		V _{CC} = 1.65 V				4		
	Low lovel output ourrent	V _{CC} = 2.3 V				8	A	
lOL	Low-level output current	V _{CC} = 2.7 V		12		12	mA	
		V _{CC} = 3 V		24		24	1	
T _A	Operating free-air temperature	-	-55	125	-40	85	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS280I – JANUARY 1993 – REVISED OCTOBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	·	SN	54LVC0	2A	SN	74LVC02	2A	UNIT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP†	MAX	MIN	TYP	MAX	UNII
	I _{OH} = -100 μA	1.65 V to 3.6 V				V _{CC} -0	.2		
		2.7 V to 3.6 V	VCC-0	.2					
	$I_{OH} = -4 \text{ mA}$	1.65 V				1.2			
Voн	$I_{OH} = -8 \text{ mA}$	2.3 V				1.7			V
	10 m 4	2.7 V	2.2			2.2			
	I _{OH} = -12 mA 3 V 2.4		2.4						
	I _{OH} = -24 mA	3 V	2.2			2.2			
	Jan - 100 uA	1.65 V to 3.6 V						0.2	
	I _{OL} = 100 μA	2.7 V to 3.6 V			0.2				
V	I _{OL} = 4 mA	1.65 V						0.45	V
VOL	I _{OL} = 8 mA	2.3 V						0.7	ľ
	I _{OL} = 12 mA	2.7 V			0.4			0.4	
	I _{OL} = 24 mA	3 V			0.55			0.55	
lį	V _I = 5.5 V or GND	3.6 V			±5			±5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V			10			10	μΑ
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V		·	500			500	μΑ
C _i	$V_I = V_{CC}$ or GND	3.3 V		5			5		pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

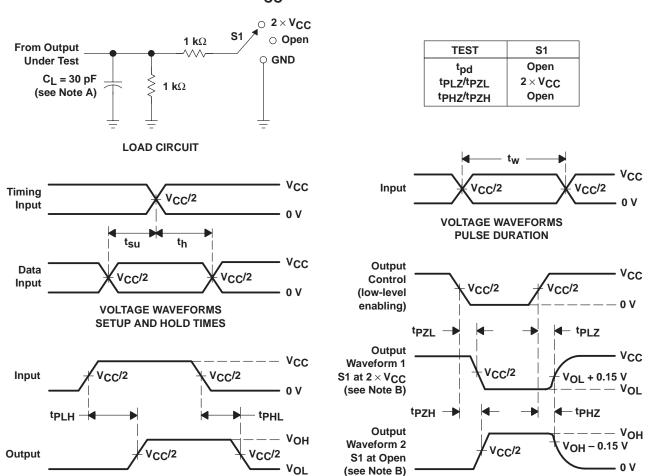
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.7 V		$V_{CC} = 2.7 \text{ V}$ $V_{CC} = 3.3 \text{ V}$ $\pm 0.3 \text{ V}$		3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX		
^t pd	A or B	Y		5.4	1	4.4	ns	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		FROM (INPUT)	TO (OUTPUT)	SN74LVC02A							
	PARAMETER			V _{CC} = 1.8 V	V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
				TYP	MIN	MAX	MIN	MAX	MIN	MAX	
I	^t pd	A or B	Y	13.4	1	7.4		5.4	1	4.4	ns
	t _{sk(o)} ‡									1	ns

[‡] Skew between any two outputs of the same package switching in the same direction

operating characteristics, T_A = 25°C


PARAMETER		TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		CONDITIONS	TYP	TYP	TYP	ONT
C _{pd}	Power dissipation capacitance per gate	f = 10 MHz	7.5	8.5	9.5	pF

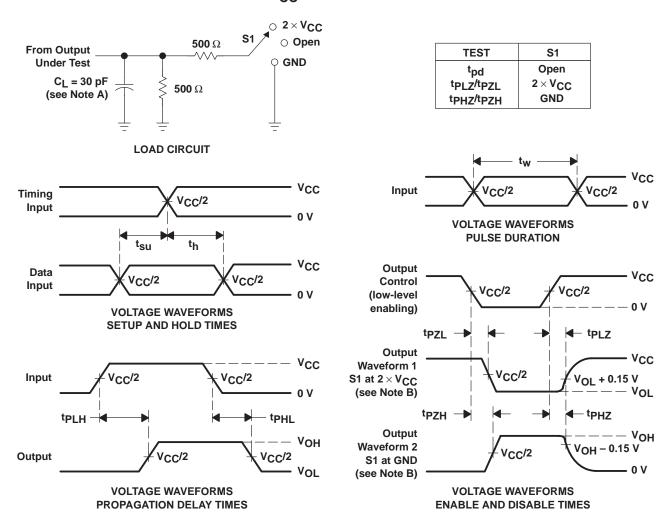
VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns. $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.

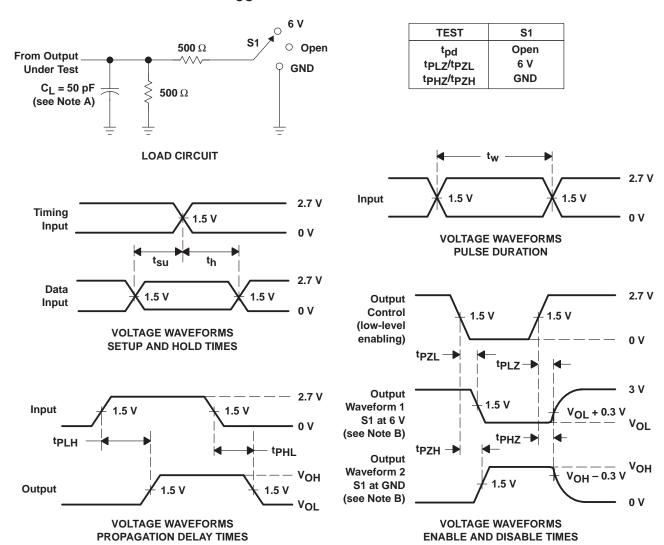

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzl and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated