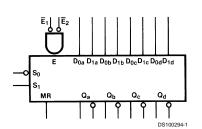
August 1998

National Semiconductor

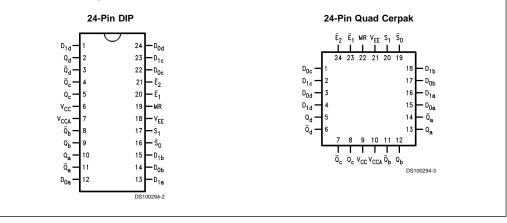
100355 Low Power Quad Multiplexer/Latch

General Description

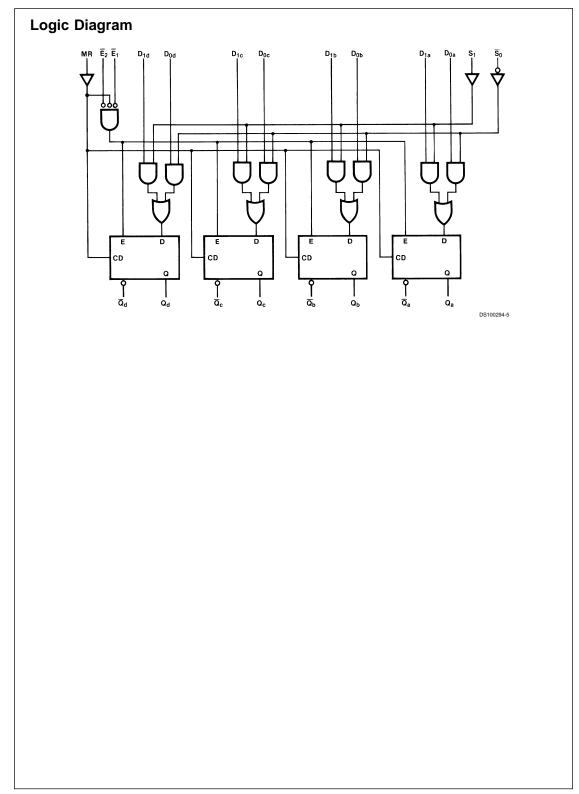

The 100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\overline{E}_n) inputs are LOW, the data that appears at an output is controlled by the Select (S_n) inputs, as shown in the Operating Mode table. In addition to routing data from either D_0 or D_1 , the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_0 or D_1 to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_0 or D_1 . A positive-going signal on either Enable input latches the out-

puts. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have 50 $k\Omega$ pulldown resistors.

Features


- Greater than 40% power reduction of the 100155
- 2000V ESD protection
- Pin/function compatible with 100155
- Voltage compensated operating range = -4.2V to -5.7V
- Standard Microcircuit Drawing
- (SMD) 5962-9165401

Logic Symbol



Pin Names	Description
$\overline{E}_1, \overline{E}_2$ \overline{S}_0, S_1	Enable Inputs (Active LOW)
\overline{S}_0, S_1	Select Inputs
MR	Master Reset
D _{na} -D _{nd}	Data Inputs
$Q_a - Q_d$	Data Outputs
$\overline{Q}_{a} - \overline{Q}_{d}$	Complementary Data Outputs

Connection Diagrams

© 1998 National Semiconductor Corporation DS100294

Operating Mode Table

	Con	trols		Outputs				
Ē1	Ē ₂	S₁	S ₀	Q _n				
н	Х	Х	Х	Latched (Note 1)				
X	н	X	X	Latched (Note 1)				
L	L	L	L	D _{0x}				
L	L	н	L	$D_{0x} + D_{1x}$				
L	L	L	н	L				
L	L	н	н	D _{1x}				
u – ши								

H =	HIGH	I Voltage	e Level
1 =	IOW	Voltage	l evel

 $L = LOW Voltage \\ X = Don't Care \\ \mbox{Note 1: Stores data present before \overline{E} went HIGH} \label{eq:Low}$

Truth Table

	Inputs							Itputs	
MR	Ē	\overline{E}_2	S ₁	\overline{S}_0	D _{1x}	D _{0x}	Q _x	Q _x	
н	Х	Х	Х	Х	Х	Х	Н	L	
L	L	L	н	н	н	Х	L	Н	
L	L	L	н	н	L	Х	н	L	
L	L	L	L	L	X	н	L	Н	
L	L	L	L	L	Х	L	н	L	
L	L	L	L	н	X	Х	н	L	
L	L	L	н	L	н	Х	L	н	
L	L	L	н	L	x	н	L	н	
L	L	L	н	L	L	L	н	L	
L	н	Х	Х	Х	X	Х	Latched (Note 1)		
L	Х	н	Х	Х	Х	Х	Latched (Note 1)		

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Above which the useful life may be impaired.

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to +0.5V
Output Current (DC Output HIGH)	–50 mA

Military Version DC Electrical Characteristics

ESD (Note 3)

Recommended Operating Conditions

Case Temperature (T_C) Military –55°C to +125°C Supply Voltage (V_{EE}) -5.7V to -4.2V Note 2: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Symbol	Parameter	Min	Max	Units	Тc	Condi	tions	Notes
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to +125°C			
		-1085	-870	mV	–55°C	V _{IN} = V _{IH (Max)}	Loading with	(Notes 4, 5,
VoL	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C	or V _{IL (Min)}	50Ω to -2.0V	6)
		-1830	-1555	mV	–55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to +125°C			
		-1085		mV	–55°C	$V_{IN} = V_{IH (Min)}$	Loading with	(Notes 4, 5,
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	or V _{IL (Max)}	50Ω to -2.0V	6)
			-1555	mV	–55°C			
VIH	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH Signal		(Notes 4, 5,
					+125°C	for ALL Inputs		6, 7)
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal		(Notes 4, 5,
					+125°C	for ALL Inputs		6, 7)
II.	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$		(Notes 4, 5,
					+125°C	$V_{IN} = V_{IL (Min)}$		6)
I _{IH}	Input HIGH Current							
	\overline{S}_0 , S_1		220					
	$\overline{E}_1, \overline{E}_2$		350	μA	0°C to +125°C			
	D _{na} -D _{nd}		340			V _{EE} = -5.7V		
	MR		430			V _{IN} = V _{IH (Max)}		(Notes 4, 5,
	\overline{S}_0, S_1		320					6)
	$\overline{E}_1, \overline{E}_2$		500	μA	–55°C			
	D _{na} -D _{nd}		490					
	MR		630					
I _{EE}	Power Supply Current	-95	-32	mA	–55°C to +125°C	Inputs Open		(Notes 4, 5, 6)

Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

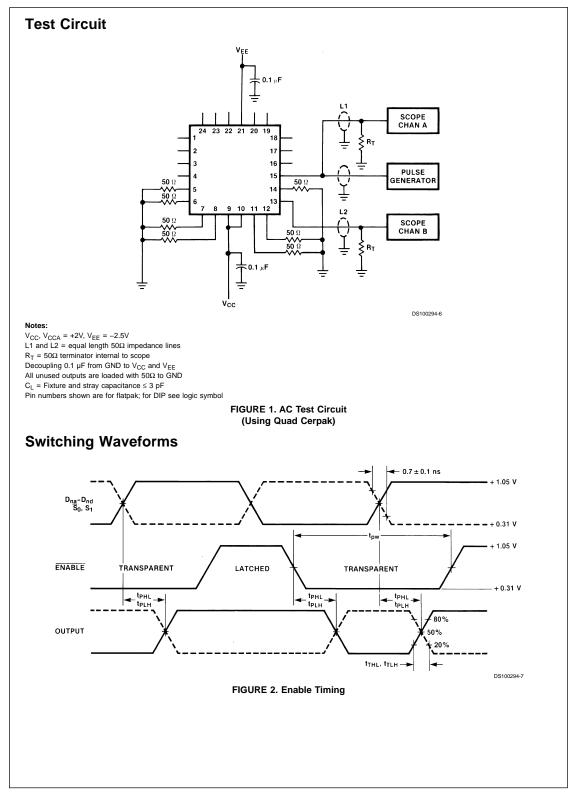
Note 5: Screen tested 100% on each device at -55°C, +25°C, and +125°C Temp., Subgroups 1, 2, 3, 7, and 8.

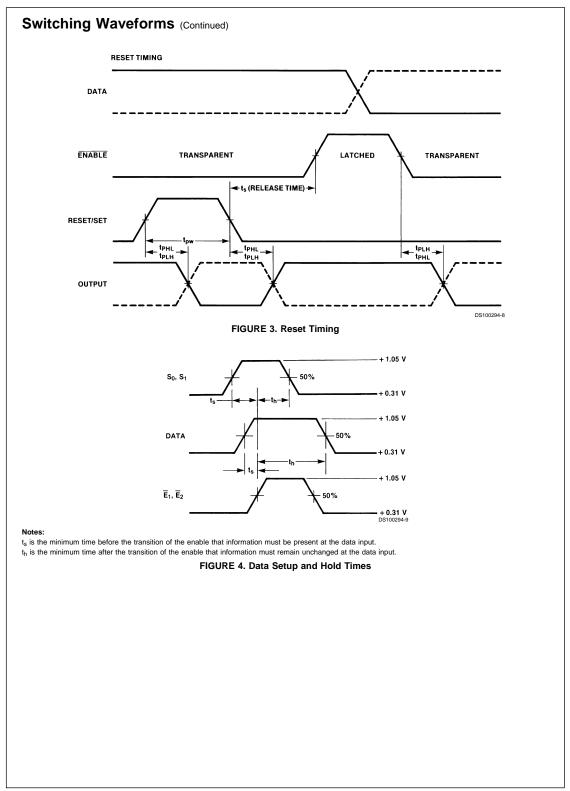
Note 6: Sample tested (Method 5005, Table 1) on each Mfg. lot at +25°, +125°C, and -55°C Temp., Subgroups 1, 2, 3, 7, and 8.

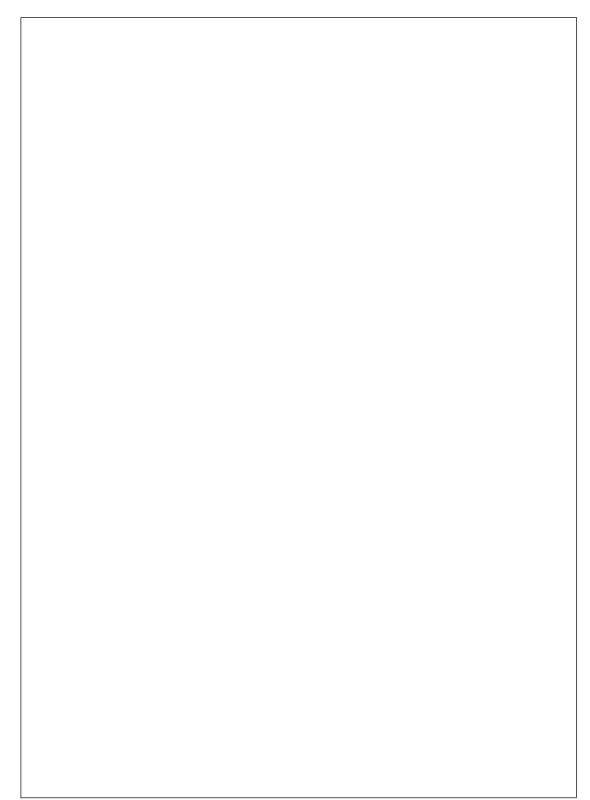
Note 7: Guaranteed by applying specified input condition and testing VOH/VOL.

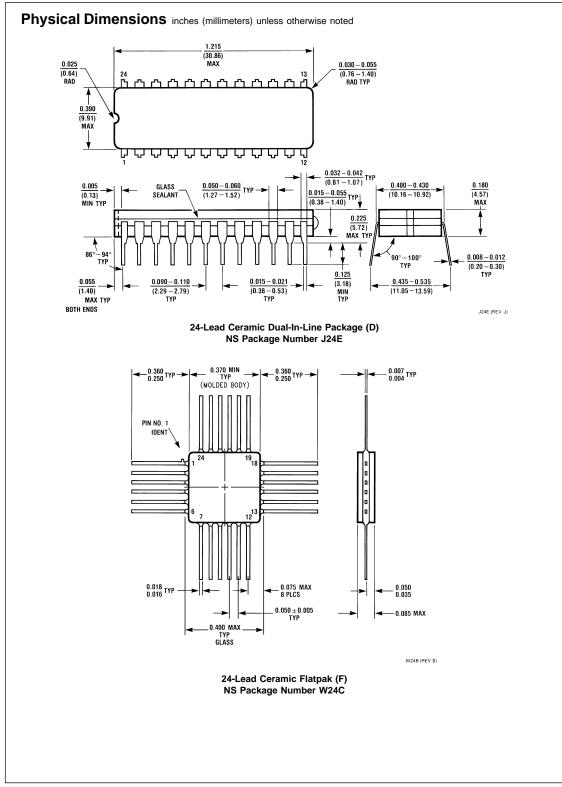
www.national.com

≥2000V


Symbol	-4.2V to -5.7V, $V_{CC} = V_{CCA} =$ Parameter	T _c = -55°C		T _c = +25°C		T _c = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay									
t _{PHL}	D _{na} –D _{nd} to Output	0.40	2.30	0.50	2.20	0.50	2.60	ns		
	(Transparent Mode)									
t _{PLH}	Propagation Delay								Figures 1, 2	
t _{PHL}	\overline{S}_0 , S ₁ to Output	0.60	3.00	0.80	2.70	0.80	3.20	ns		
	(Transparent Mode)									(Notes 8, 9 10)
t _{PLH}	Propagation Delay	0.50	2.60	0.60	2.30	0.70	2.70	ns		10)
t _{PHL}	$\overline{E}_1, \overline{E}_2$ to Output									
t _{PLH}	Propagation Delay	0.60	2.80	0.70	2.60	0.70	2.90	ns	Figures 1, 3	(Notes 8, 9
t _{PHL}	MR to Output									10)
t _{TLH}	Transition Time	0.40	1.90	0.40	1.90	0.40	1.90	ns	Figures 1, 2	(Note 11)
t _{THL}	20% to 80%, 80% to 20%									
t _s	Setup Time									
	D _{na} -D _{nd}	0.90		0.90		0.90		ns	Figure 4	(Note 11)
	\overline{S}_0 , S_1	2.40		2.40		2.40				
	MR (Release Time)	1.50		1.50		1.50			Figure 3	
t _H	Hold Time									
	D _{na} –D _{nd}	0.40		0.40		0.40		ns	Figure 4	(Note 11)
	\overline{S}_0 , S_1	0.00		0.00		0.00				
t _{pw} (L)	Pulse Width LOW \overline{E}_1 , \overline{E}_2	2.00		2.00		2.00		ns	Figure 2	(Note 11)
t _{pw} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	(Note 11)


Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 9: Screen tested 100% on each device at +25°C, Temperature only, Subgroup A9.


Note 10: Sample tested (Method 5005, Table 1) on each Mfg. lot at +25°, Subgroup A9, and at +125°C, and -55°C Temp., Subgroups A10 & A11.

Note 11: Not tested at +25°C, +125°C and -55°C Temperature (design characterization data).

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

	National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
	Corporation	Europe	Asia Pacific Customer	Japan Ltd.
/* _	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
ww.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.