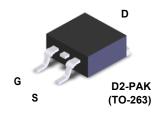
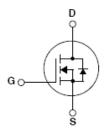


March 2013

FDB8443


N-Channel PowerTrench[®] MOSFET 40 V, 182 A, 3.0 m Ω


Features

- $R_{DS(on)} = 2.3 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V, } I_D = 80 \text{ A}$
- Q_{G(tot)} = 142 nC (Typ.)
- Low Miller Charge, Q_{GD} = 32 nC(Typ.)
- UIS Capability (Single Pulse and Repetitive Pulse)
- RoHS Compliant

Applications

- Power Tools
- Motor drives and Uninterruptible Power Supplies
- Synchronous Rectification
- Battery Protection Circuit

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol		Parameter	FDB8443	Unit
V_{DSS}	Drain to Source Voltage		40	V
V_{GS}	Gate to Source Voltage		±20	V
		- Continuous (T _C = 25°C, Silicon Limited)	182*	
	Drain Current	- Continuous (T _C = 100°C, Silicon Limited)	129*	
ID		- Continuous (T _C = 25°C, Package Limited)	120	Α
		- Continuous ($T_A = 25^{\circ}C$, $R_{\theta JA} = 43^{\circ}C/W$)	25	
I _{DM}	Drain Current	- Pulsed	See Figure 4	
E _{AS}	Single Pulse Avalanche Ener	gy (Note 1)	531	mJ
D	Power Dissipation		188	W
P_{D}	Derate above 25°C		1.25	W/°C
T _J , T _{STG}	Operating and Storage Temp	erature	-55 to +175	°C

^{*}Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDB8443	Unit
$R_{\theta JC}$	Thermal Resistance Junction to Case, Max.	0.8	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient, Max. (Note 2)	62	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area, Max.	43	°C/W

Unit

nΑ

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8443	FDB8443	TO-263AB	330mm	24mm	800 units

Electrical Characteristics T_C = 25°C unless otherwise noted

Parameter

Gate to Source Leakage Current

Off Characteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40	-	-	V
	J. Zara Cata Valtaga Prain Current	V _{DS} = 32V,	-	-	1	^
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_C = 150^{\circ}C$	-	-	250	μΑ

 $V_{GS} = \pm 20V$

Test Conditions

Min

Тур

Max

±100

On Characteristics

Symbol

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.8	4	V
	I _D = 80A, V _{GS} = 10V	-	2.3	3.0		
r _{DS(on)}	Drain to Source On Resistance	I_D = 80A, V_{GS} = 10V, T_J = 175°C	-	4.2	5.5	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V 0V		-	9310	-	pF
C _{oss}	Output Capacitance	¬ v _{DS} = 25v, v _{GS} = 0 ¬ f = 1MHz	$V_{DS} = 25V, V_{GS} = 0V,$		800	-	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1WHZ		-	510	-	pF
R_G	Gate Resistance	V _{GS} = 0.5V, f = 1MHz		-	0.9	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0 to 10V		-	142	185	nC
Q _{g(TH)}	Threshold Gate Charge	V _{GS} = 0 to 2V	V _{DD} = 20V	-	17.5	23	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 35A	-	36	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1mA$	-	18.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	32	-	nC

Switching Characteristics (V_{GS} = 10V)

t _{on}	Turn-On Time	V_{DD} = 20V, I_{D} = 35A V_{GS} = 10V, R_{GS} = 2 Ω	-	-	58	ns
t _{d(on)}	Turn-On Delay Time		-	18.4	-	ns
t _r	Rise Time		-	17.9	-	ns
t _{d(off)}	Turn-Off Delay Time		-	55	-	ns
t _f	Fall Time		-	13.5	-	ns
t _{off}	Turn-Off Time		-	-	109	ns

Drain-Source Diode Characteristics

١,	\/	Source to Drain Diode Voltage	I _{SD} = 35A	-	0.8	1.25	V	
V_{SD}	v SD		I _{SD} = 15A	-	0.8	1.0	V	
1	t _{rr}	Reverse Recovery Time	I _{SD} = 35A, dI _{SD} /dt = 100A/μs	-	42	55	ns	
(Q _{rr}	Reverse Recovery Charge	isp = 33A, disp/dt = 100A/μs	ı	48	62	nC	

- **1:** Starting $T_J = 25^{\circ}C$, L = 0.26mH, $I_{AS} = 64$ A. **2:** Pulse width = 100s.

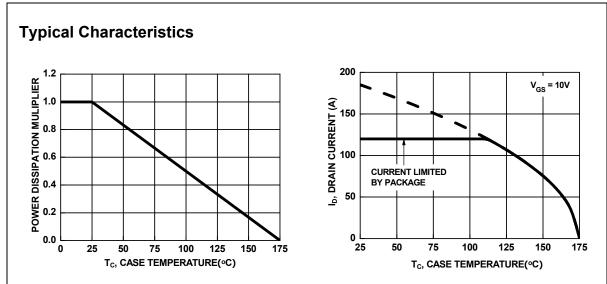


Figure 1. Normalized Power Dissipation vs Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

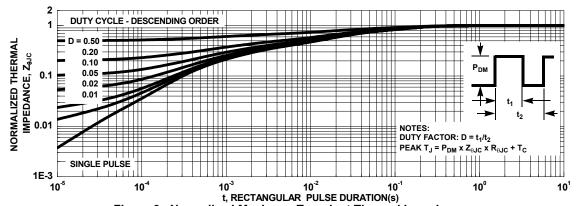


Figure 3. Normalized Maximum Transient Thermal Impedance

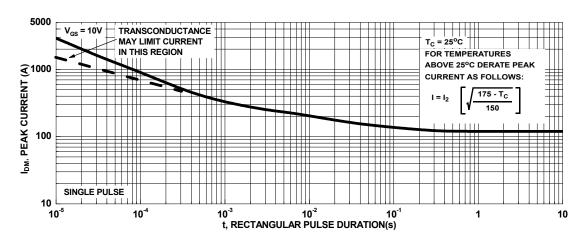
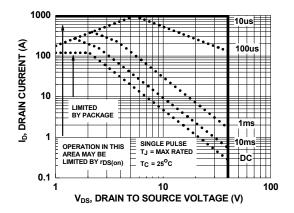



Figure 4. Peak Current Capability

Typical Characteristics

THE PROPERTY OF THE PROPERTY O

If R = 0 t_{AV} = (L)(I_{AS})/(1.3*RATED BV_{DSS}

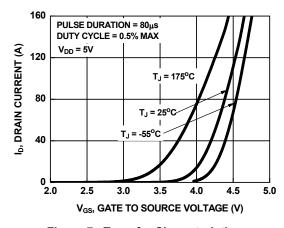

500

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

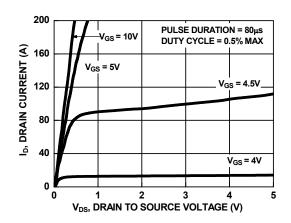
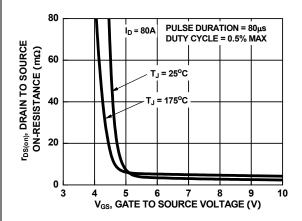



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

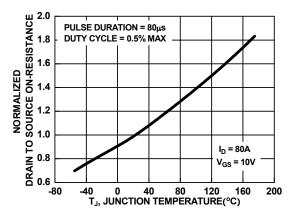


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

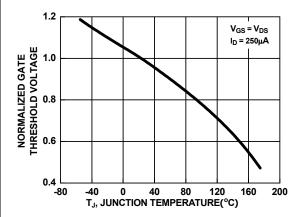


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

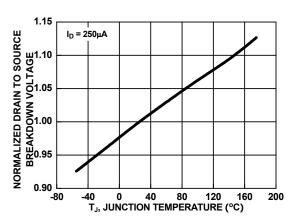


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature



Figure 13. Capacitance vs Drain to Source Voltage

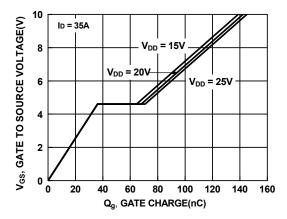


Figure 14. Gate Charge vs Gate to Source Voltage

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

2Cool™ FPS™ AccuPower™ AX-CAP®* F-PFS™ FRFFT® BitSiC™ Global Power ResourceSM

Build it Now™ Green Bridge™ CorePLUS™ Green FPS™ Green FPS™ e-Series™

G*max*™ GTO™

IntelliMAX™

and Better™

MegaBuck™

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

mWSaver™

OPTOLOGIC®

OPTOPLANAR®

OptoHiT™

MIČROCOUPLER™

ISOPLANAR™

Marking Small Speakers Sound Louder

CorePOWER™ CROSSVOLTTM CTL™

Current Transfer Logic™ DEUXPEED® Dual Cool™

EcoSPARK® EfficentMax™ ESBC™

Fairchild® FACT Quiet Series™

Fairchild Semiconductor® FAST® FastvCore™ FETBench™

(1)_® PowerTrench® PowerXS™

Programmable Active Droop™

QFET® QS™ Quiet Series™ RapidConfigure[™] тм

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SyncFET™

SYSTEM ®*
GENERAL
TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinvPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™

Sync-Lock™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty issues that may arise.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164

^{*}Trademarks of System General Corporation, used under license by Fairchild Semiconductor.