

May 2007

# DM74ALS563A Octal D-Type Transparent Latch with 3-STATE Output

### **Features**

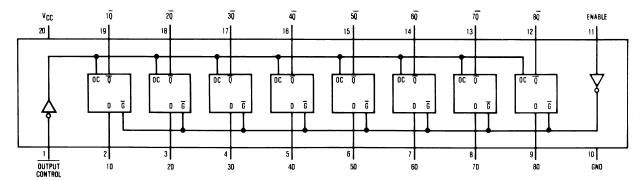
- Switching specifications at 50pF
- Switching specifications guaranteed over full temperature and V<sub>CC</sub> range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly

### **General Description**

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight inverting latches of the DM74ALS563A are transparent D-type latches. While the enable (G) is HIGH the Q outputs will follow the data (D) inputs. When the enable is taken LOW the output will be latched at the complement of the level of the data that was set up.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.


The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

### **Ordering Information**

| Order<br>Number | Package<br>Number | Package Description                                                        |
|-----------------|-------------------|----------------------------------------------------------------------------|
| DM74ALS563AWM   | M20B              | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide |

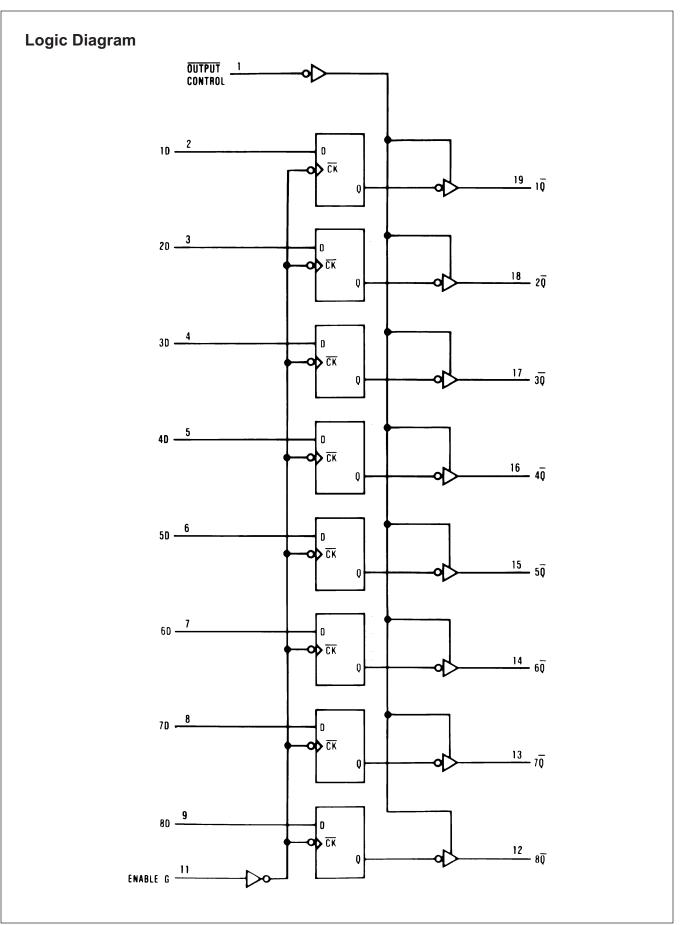
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

# **Connection Diagram**



### **Function Table**

| Output<br>Control | Enable G | D | Output $\overline{\mathbb{Q}}$ |
|-------------------|----------|---|--------------------------------|
| L                 | Н        | Н | L                              |
| L                 | Н        | L | Н                              |
| L                 | L        | Х | $\overline{Q}_0$               |
| Н                 | X        | X | Z                              |


L = LOW State

H = HIGH State

X = Don't Care

Z = High Impedance State

 $\overline{Q}_0$  = Previous Condition of  $\overline{Q}$ 



### **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol           | Parameter                              | Rating       |
|------------------|----------------------------------------|--------------|
| V <sub>CC</sub>  | Supply Voltage                         | 7V           |
| VI               | Input Voltage                          |              |
|                  | Voltage Applied to Disabled Output     |              |
| T <sub>A</sub>   | Operating Free Air Temperature Range   | 0°C to +70°C |
| T <sub>STG</sub> | Storage Temperature Range -65°C to +15 |              |
| $\theta_{JA}$    | Typical Thermal Resistance 75.0        |              |

### **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol          | Parameter                          | Min. | Nom. | Max. | Units |
|-----------------|------------------------------------|------|------|------|-------|
| V <sub>CC</sub> | Supply Voltage                     | 4.5  | 5    | 5.5  | V     |
| V <sub>IH</sub> | HIGH Level Input Voltage           | 2    |      |      | V     |
| V <sub>IL</sub> | LOW Level Input Voltage            |      |      | 0.8  | V     |
| I <sub>OH</sub> | HIGH Level Output Current          |      |      | -2.6 | mA    |
| I <sub>OL</sub> | LOW Level Output Current           |      |      | 24   | mA    |
| t <sub>W</sub>  | Width of Enable Pulse, HIGH or LOW | 15   |      |      | ns    |
| t <sub>SU</sub> | Data Setup Time <sup>(1)</sup>     | 10↓  |      |      | ns    |
| t <sub>H</sub>  | Data Hold Time <sup>(1)</sup>      | 10↓  |      |      | ns    |
| T <sub>A</sub>  | Free Air Operating Temperature     | 0    |      | 70   | °C    |

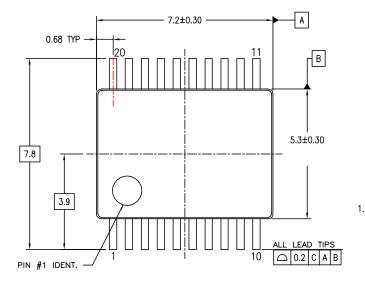
#### Note:

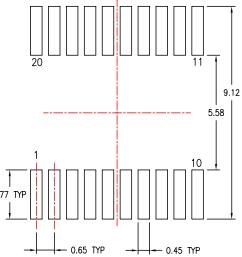
1. The  $(\downarrow)$  arrow indicates the negative edge of the enable is used for reference.

### **Electrical Characteristics**

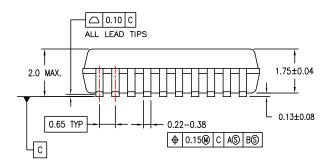
Over recommended operating free air temperature range. All typical values are measured at  $V_{CC} = 5V$ ,  $T_A = 25^{\circ}C$ .

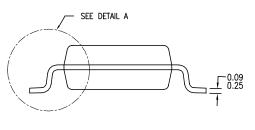
| Symbol           | Parameter                                              | Conditions                                   |                                              | Min.                | Тур. | Max. | Units |
|------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------|------|------|-------|
| V <sub>IK</sub>  | Input Clamp Voltage                                    | $V_{CC} = 4.5V, I_{I} = -18 \text{ mA}$      |                                              |                     |      | -1.2 | V     |
| V <sub>OH</sub>  | HIGH Level Output Voltage                              | $V_{CC} = 4.5 \text{V}, V_{IL} = 1$          | V <sub>IL</sub> Max., I <sub>OH</sub> = Max. | 2.4                 | 3.2  |      | V     |
|                  |                                                        | $V_{CC} = 4.5V \text{ to } 5.5$              | V, I <sub>OH</sub> = -400μA                  | V <sub>CC</sub> – 2 |      |      | V     |
| V <sub>OL</sub>  | LOW Level Output Voltage                               |                                              | I <sub>OL</sub> = 12mA                       |                     | 0.25 | 0.4  | V     |
|                  |                                                        | $V_{IH} = 2V$                                | I <sub>OL</sub> = 24mA                       |                     | 0.35 | 0.5  |       |
| I <sub>I</sub>   | Input Current @ Maximum Input Voltage                  | V <sub>CC</sub> = 5.5V, V <sub>IH</sub> = 7V |                                              |                     |      | 0.1  | mA    |
| I <sub>IH</sub>  | HIGH Level Input Current                               | $V_{CC} = 5.5V, V_{IH} = 2.7V$               |                                              |                     |      | 20   | μA    |
| I <sub>IL</sub>  | LOW Level Input Current                                | $V_{CC} = 5.5V, V_{IL} = 0.4V$               |                                              |                     |      | -0.1 | mA    |
| Io               | Output Drive Current                                   | $V_{CC} = 5.5V, V_{O} = 2.25V$               |                                              | -30                 |      | -112 | mA    |
| I <sub>OZH</sub> | OFF-State Output Current<br>HIGH Level Voltage Applied | $V_{CC} = 5.5V, V_{IH} = 2V, V_{O} = 2.7V$   |                                              |                     |      | 20   | μA    |
| I <sub>OZL</sub> | OFF-State Output Current LOW Level Voltage Applied     | $V_{CC} = 5.5V, V_{IH} = 2V, V_{O} = 0.4V$   |                                              |                     |      | -20  | μA    |
| I <sub>CC</sub>  | Supply Current                                         | $V_{CC} = 5.5V$ ,                            | Outputs HIGH                                 |                     | 10   | 17   | mA    |
|                  |                                                        | Outputs OPEN                                 | Outputs LOW                                  |                     | 16   | 26   |       |
|                  |                                                        |                                              | Outputs Disabled                             |                     | 17   | 29   |       |


# **Switching Characteristics**


Over recommended operating free air temperature range.

| Symbol           | Parameter                                           | Conditions                                            | From           | То    | Min. | Max. | Units |
|------------------|-----------------------------------------------------|-------------------------------------------------------|----------------|-------|------|------|-------|
| t <sub>PLH</sub> | Propagation Delay Time,<br>LOW-to-HIGH Level Output | $V_{CC} = 4.5V \text{ to } 5.5V$<br>$R_L = 500\Omega$ | Data           | Any Q | 3    | 18   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>HIGH-to-LOW Level Output | $C_L = 50pF$                                          | Data           | Any Q | 3    | 14   | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>LOW-to-HIGH Level Output |                                                       | Enable         | Any Q | 8    | 22   | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>HIGH-to-LOW Level Output |                                                       | Enable         | Any Q | 8    | 21   | ns    |
| t <sub>PZH</sub> | Output Enable Time to HIGH<br>Level Output          |                                                       | Output Control | Any Q | 4    | 18   | ns    |
| t <sub>PZL</sub> | Output Enable Time to LOW Level Output              |                                                       | Output Control | Any Q | 4    | 18   | ns    |
| t <sub>PHZ</sub> | Output Disable Time from HIGH Level Output          |                                                       | Output Control | Any Q | 2    | 10   | ns    |
| t <sub>PLZ</sub> | Output Disable Time from LOW Level Output           |                                                       | Output Control | Any Q | 3    | 15   | ns    |

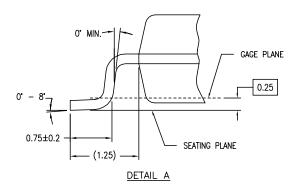

## **Physical Dimensions**


Dimensions are in millimeters unless otherwise noted.





LAND PATTERN RECOMMENDATIONS






### DIMENSIONS ARE IN MILLIMETERS

### NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE 1/94.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M 1994.



MSA20REVB

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B





#### **TRADEMARKS**

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

| ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power Resource™ Green FPS™ | Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® | Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 | SyncFET™ The Power Franchise®  TM  TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ VCX™ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|

#### DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

# PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                               |  |  |
|--------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.                                                   |  |  |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                      |  |  |

Rev. I28