

DM74LS174

Hex/Quad D-Type Flip-Flops with Clear

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time require-ments is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or LOW level, the D input signal has no effect at the output.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

August 1992 Revised April 2000

DM74LS174 • DM74LS175 Hex/Quad D-Type Flip-Flops with Clear

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

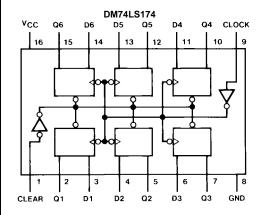
Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or LOW level, the D input signal has no effect at the output.

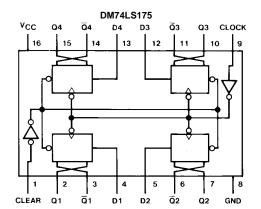
Features

- DM74LS174 contains six flip-flops with single-rail outputs
- DM74LS175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers

Shift registers


- Pattern generators
 Typical clock frequency 40 MHz
- Typical power dissipation per flip-flop 14 mW

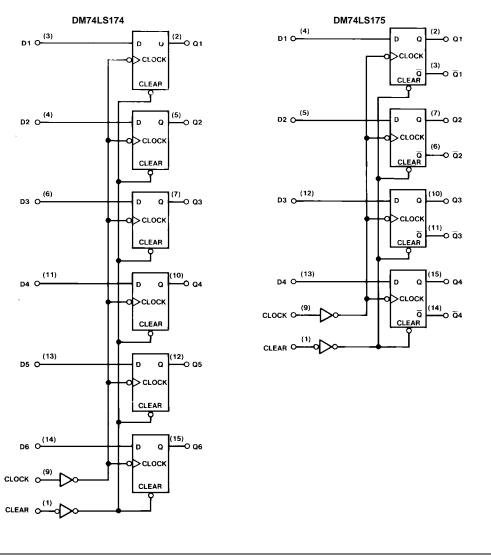

Ordering Code:

Order Number	Package Number	Package Description
DM74LS174M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS174N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Function Table


(Each Flip-Flop)

	Inputs	Outputs		
Clear	Clock	D	Q	<u>Q</u> †
L	Х	Х	L	Н
Н	1	Н	Н	L
Н	1	L	L	Н
Н	L	Х	Q_0	\overline{Q}_0

- H = HIGH Level (steady state)
 L = LOW Level (steady state)
 X = Don't Care

 ↑ = Transition from LOW-to-HIGH level
 Q₀ = The level of Q before the indicated steady-state input conditions were established.
- † = DM74LS175 only

Logic Diagrams

Absolute Maximum Ratings(Note 1)

Storage Temperature Range

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 0°C to +70°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS174 Recommended Operating Conditions

 $-65^{\circ}C$ to $+150^{\circ}C$

Symbol	Parameter	r	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Curren			-0.4	mA	
I _{OL}	LOW Level Output Current			8	mA	
f _{CLK}	Clock Frequency (Note 2)	0		30	MHz	
f _{CLK}	Clock Frequency (Note 3)	Clock Frequency (Note 3)			25	MHz
t _W	Pulse Width	Clock	20			ns
	(Note 4)	Clear	20			115
t _{SU}	Data Setup Time (Note 4)	20			ns	
t _H	Data Hold Time (Note 4)	0			ns	
t _{REL}	Clear Release Time (Note	25			ns	
T _A	Free Air Operating Temper	ature	0		70	°C

Note 2: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V.

Note 3: $C_L = 50$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

DM74LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 5)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.55	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level	V _{CC} = Max	Clock			-0.4	
	Input Current	$V_I = 0.4V$	Clear			-0.4	mA
			Data			-0.36	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 6)		-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 7)			16	26	mA

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock.

DM74LS174 Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time	Clock to Output		30		32	ns
	LOW-to-HIGH Level Output	Clock to Output		30		32	115
t _{PHL}	Propagation Delay Time	Clock to Output		30		36	no
	HIGH-to-LOW Level Output	Clock to Output		30		30	ns
t _{PHL}	Propagation Delay Time	Clear to Output		35		42	ns
	HIGH-to-LOW Level Output	Clear to Output		33		42	115

DM74LS175 Recommended Operating Conditions Parameter Symbol Nom Units Supply Voltage 4.75 5.25 V_{CC} V_{IH} HIGH Level Input Voltage 2 V V_{IL} LOW Level Input Voltage 0.8 ٧ HIGH Level Output Current -0.4 mΑ LOW Level Output Current I_{OL} f_{CLK} Clock Frequency (Note 8) 30 MHz Clock Frequency (Note 9) MHz f_{CLK} 0 25 20 Pulse Width Clock ns (Note 10) Clear 20 Data Setup Time (Note 10) 20 ns t_{SU} Data Hold Time (Note 10) t_H 0 Clear Release Time (Note 10) 25 t_{REL} Free Air Operating Temperature 0 70 °C

Note 8: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5V$.

Note 9: $C_L = 50$ pF, $R_L = 2$ k Ω , $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

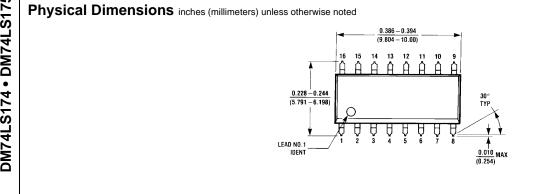
Note 10: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

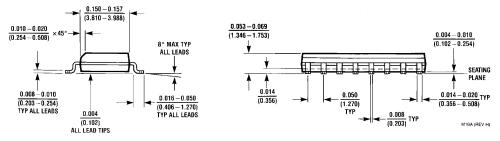
DM74LS175 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 11)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V	
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.7	3.4		v
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		0.55	0.5	V	
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level	V _{CC} = Max	Clock			-0.4	
	Input Current	$V_I = 0.4V$	Clear			-0.4	mA
		Data				-0.36	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 12)		-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 13)			11	18	mA

Note 11: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 12: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 13: With all outputs OPEN and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the clock input.

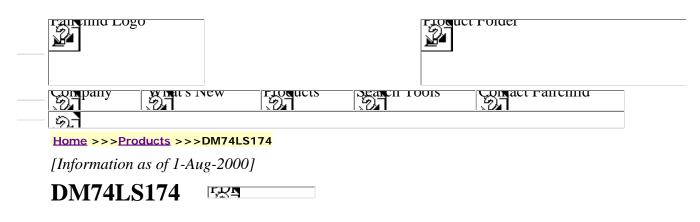
DM74LS175 Switching Characteristics


at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

		From (Input)					
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units
			Min	Max	Min	Max	1
f _{MAX}	Maximum Clock Frequency		30		25		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or Q		30		32	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or Q		30		36	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to Q		25		29	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		35		42	ns

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E


Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Hex D Flip-Flop with Clear

Generic P/N 74LS174

Contents

General Description

Features

Datasheet

Availability, Models, Samples & Pricing

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. A direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the or LOW level, the D input signal has no effect at the output.

Features

- DM74LS174 contains six flip-flops with single-rail outputs
- DM74LS175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers

Shift registers

1 of 2 8/4/00 1:55 PM

Pattern generators

- Typical clock frequency 40 MHz
- Typical power dissipation per flip-flop 14 mW

Datasheet

Receive datasheet via E-mail or download now ; use Adobe Acrobat to view...

DM74LS174/DM74LS175 D Flip-Flop with Clear (73 Kbytes; 29-JUL-00)

Availability, Models, Samples & Pricing

Part Number	Grade	Package		Status	Models		Budgetary Pricing		Std Pack	Packaş
Tart Number	Grauc	Туре	# pins	Status	SPICE	IBIS	Quantity	\$US ea	Size	Marki
DM74LS174M	Comm	SOIC	16	Full Production	N/A	N/A		\$0.5560 \$0.4170 \$0.3330	N/A	\$Y&Z DM74
DM74LS174MX	Comm	SOIC	16	Full Production	N/A	N/A		\$0.8890 \$0.6670 \$0.5330	N/A	\$Y&Z DM74
DM74LS174SJ	Comm	SOIC	16	Full Production	N/A	N/A		N/A	N/A	\$Y&Z LS
DM74LS174SJX	Comm	SOIC	16	Full Production	N/A	N/A		N/A	N/A	\$Y&Z LS
DM74LS174N	Comm	MDIP	16	Full Production	N/A	N/A	1-24 25-99 100-1000		N/A	\$Y&Z. DM74
DM74LS174CW	Comm	wat	fer	Preliminary	N/A	N/A		N/A	N/A	

Quick Search	Company	What's New	Products	Search Tools	Contact Fairchild	Home
Copviisiii			_			

2 of 2