

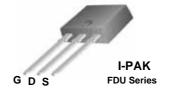
February 2007

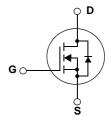
UniFET™

FDD6N25 / FDU6N25

250V N-Channel MOSFET

Features


- 4.4A, 250V, $R_{DS(on)} = 1.1\Omega @V_{GS} = 10 \text{ V}$
- Low gate charge (typical 4.5 nC)
- Low C_{rss} (typical 5 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability


Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

Absolute Maximum Ratings

Symbol	Parameter		FDD6N25 / FDU6N25	Unit	
V _{DSS}	Drain-Source Voltage		250	V	
I _D	$ \begin{array}{c} \text{Drain Current} & \text{- Continuous } (T_C = 25^{\circ}\text{C} \\ \text{- Continuous } (T_C = 100^{\circ} \\ \end{array} $		4.4 2.6	A A	
I _{DM}	Drain Current - Pulsed	(Note 1)	18	А	
V _{GSS}	Gate-Source voltage	±30	V		
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	45	mJ	
I _{AR}	Avalanche Current	(Note 1)	4.4	A	
E _{AR}	Repetitive Avalanche Energy (Note 1		5	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5	V/ns	
P _D	Power Dissipation (T _C = 25°C) - Derate above 25°C		50 0.4	W W/°C	
T _{J,} T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C		
T _L	Maximum Lead Temperature for Soldering Purp 1/8" from Case for 5 Seconds	oose,	300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD6N25	FDD6N25TM	D-PAK	380mm	16mm	2500
FDD6N25	FDD6N25TF	D-PAK	380mm	16mm	2000
FDU6N25	FDU6N25TU	I-PAK	-	-	70

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
Off Charac	teristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	250			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.25		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 250V, V _{GS} = 0V V _{DS} = 200V, T _C = 125°C			1 10	μA μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V$, $V_{DS} = 0V$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30V$, $V_{DS} = 0V$			-100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 2.2A		0.9	1.1	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40V, I_D = 2.2A$ (Note 4)		5.5		S
Dynamic C	haracteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		194	250	pF
C _{oss}	Output Capacitance	f = 1.0MHz		38	50	pF
C _{rss}	Reverse Transfer Capacitance			5	8	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 125V, I_D = 6A$	1	10	30	ns
t _r	Turn-On Rise Time	$R_G = 25\Omega$		25	60	ns
t _{d(off)}	Turn-Off Delay Time			7	24	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		12	34	ns
Q_g	Total Gate Charge	$V_{DS} = 200V, I_{D} = 6A$		4.5	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		1.5		nC
Q_{gd}	Gate-Drain Charge	(Note 4, 5)		1.8		nC
Drain-Sour	ce Diode Characteristics and Maximun	n Ratings				
I _S	Maximum Continuous Drain-Source Dio	de Forward Current			4.4	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Fo	orward Current			18	Α
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 4.4A			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V$, $I_S = 6A$		145		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s (Note 4)$		0.55		μС
	t					

NOTES

^{1.} Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} L = 3.7mH, I $_{AS}$ = 4.4A, V $_{DD}$ = 50V, R $_{G}$ = 25 $\!\Omega$, Starting T $_{J}$ = 25 $^{\circ}C$

^{3.} $I_{SD} \le 4.4 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

^{4.} Pulse Test: Pulse width $\leq 300 \mu \text{s}, \ \text{Duty Cycle} \leq 2\%$

^{5.} Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

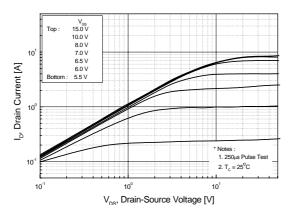


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

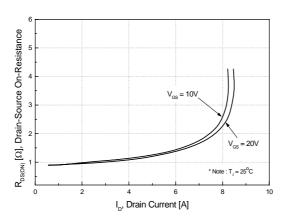


Figure 5. Capacitance Characteristics

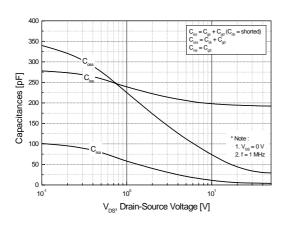


Figure 2. Transfer Characteristics

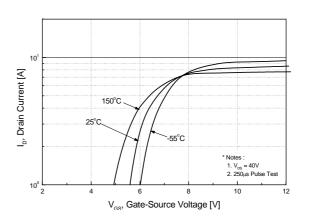
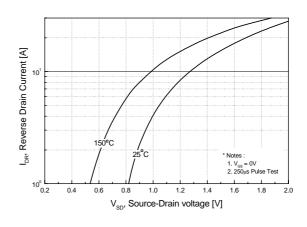
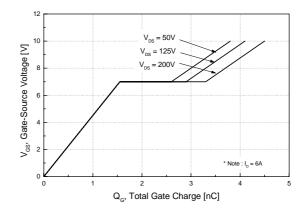




Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

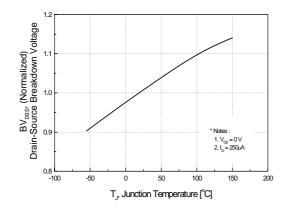


Figure 8. On-Resistance Variation vs. Temperature

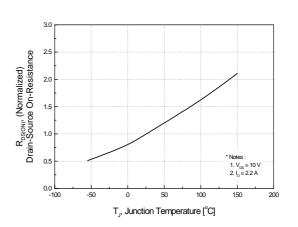
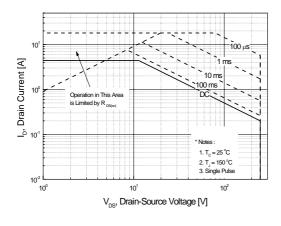



Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

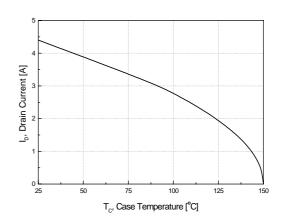
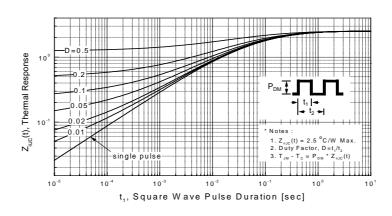
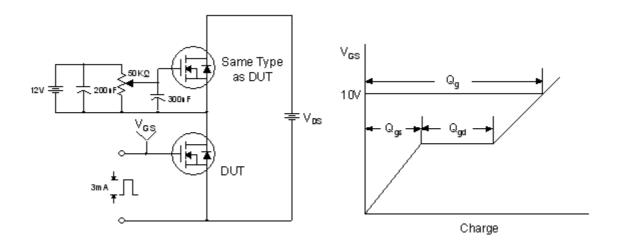
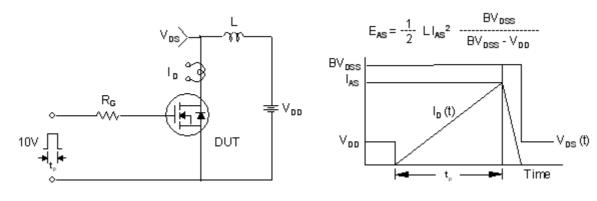
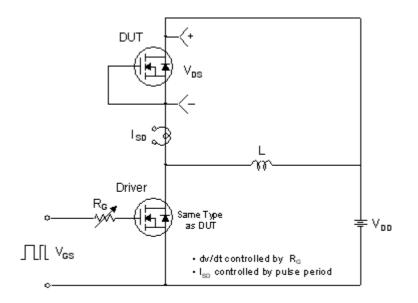
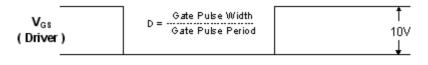
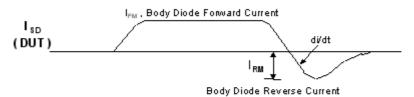




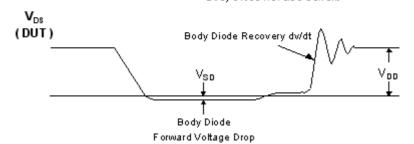
Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform

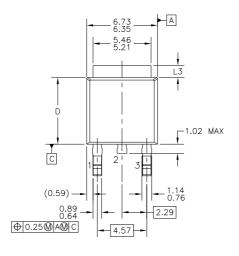

Resistive Switching Test Circuit & Waveforms

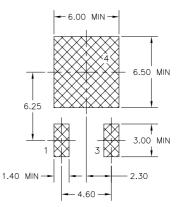


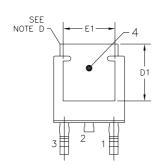

Unclamped Inductive Switching Test Circuit & Waveforms

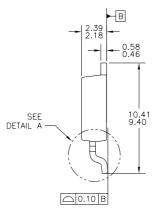


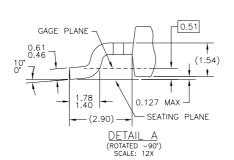
Peak Diode Recovery dv/dt Test Circuit & Waveforms






Mechanical Dimensions


D-PAK



LAND PATTERN RECOMMENDATION

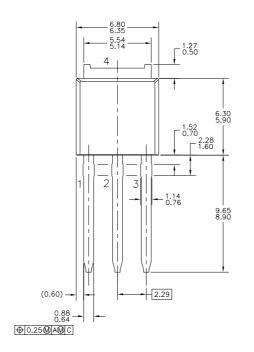
- NOTES: UNLESS OTHERWISE SPECIFIED

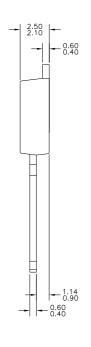
 A) ALL DIMENSIONS ARE IN MILLIMETERS.

 B) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA & AB, DATED NOV. 1999.

 C) DIMENSIONING AND TOLERANCING PER ASME 114.5M-1994.

 D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.


 E) DIMENSIONS L3,D,E1&D1 TABLE:


	OPTION AA	OPTION AB
L3	0.89-1.27	1.52-2.03
D	5.97-6.22	5.33-5.59
E1	4.32 MIN	3.81 MIN
D1	5.21 MIN	4.57 MIN
DDEC	NOT OF T	DIMMED CEN

F) PRESENCE OF TRIMMED CENTER LEAD IS OPTIONAL.

Mechanical Dimensions

I-PAK

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

Across the board. Around the world.™ ActiveArray™ Bottomless™ Build it Now™ CoolFET™

 $CROSSVOLT^{\text{TM}}$ $\mathsf{CTL}^{\mathsf{TM}}$ Current Transfer Logic™ DOME™ E²CMOSTM EcoSPARK® EnSigna™ FACT Quiet Series™

FACT[®] FAST® FASTr™ FPS™ $\mathsf{FRFET}^{\scriptscriptstyle{\textcircled{\$}}}$

GlobalOptoisolator™ GTO™

HiSeC™ i-Lo™

ImpliedDisconnect™ IntelliMAX™ ISOPLANAR™ MICROCOUPLER™ MicroPak™ MICROWIRE™ $MSX^{\scriptscriptstyle\mathsf{TM}}$

 OCX^{TM} $\mathsf{OCXPro}^\mathsf{TM}$ OPTOLOGIC® **OPTOPLANAR®** PACMAN™ POP™ Power220® Power247® PowerEdge™

MSXPro™ PowerSaver™ PowerTrench® Programmable Active Droop™ QFET[®] QS™

QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 ТСМ™

The Power Franchise® TinyBoost™

TinyBuck™

TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ μSerDes™ UHC® UniFET™ VCX™ Wire™

TinyLogic[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 123

Search:

Go

DATASHEETS, SAMPLES, BUY

Home >> Find products >>

FDD6N25

250V N-Channel MOSFET

Contents

- General description
- Qualification Support

- Features
- Product status/pricing/packaging
- Order Samples

General description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

back to top

Features

- 4.4A, 250V, $R_{DS(on)} = 1.1\Omega @V_{GS} = 10 \text{ V}$
- Low gate charge (typical 4.5 nC)
- Low C_{rss} (typical 5 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

г								
	Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**

FDD6N25TF	Full Production	Full Production	\$0.54	TO-252(DPAK)	2	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) &E& 3 (3-Digit Date Code) Line 2: FDD Line 3: 6N25
FDD6N25TM	Full Production	Full Production	\$0.56	TO-252(DPAK)	2	Line 1: \$Y (Fairchild logo) & Z (Asm. Plant Code) &E& 3 (3-Digit Date Code) Line 2: FDD Line 3: 6N25

^{*} Fairchild 1,000 piece Budgetary Pricing

** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDD6N25 is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FDD6N25TF
FDD6N25TM

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |