Small Signal MOSFET

20 V, Complementary 0.65 mm x 0.90 mm x 0.4 mm XLLGA6 Package

Features

- Advanced Trench Complementary MOSFET
- Offers a Low $R_{DS(ON)}$ Solution in the Ultra Small 0.65 mm \times 0.90 mm Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

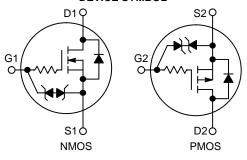
Applications

- Small Signal Load Switch with Level Shift
- Analog Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Para	Symbol	Value	Unit		
Drain-to-Source Voltag	NMOS	V _{DSS}	20	V	
	PMOS		-20		
Gate-to-Source Voltage)	NMOS	V _{GSS}	±8	V
				±8	
N-Channel	Steady	$T_A = 25^{\circ}C$	I _D	220	mA
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		158	
	t ≤ 5 s	$T_A = 25^{\circ}C$		253	
P-Channel	Steady	$T_A = 25^{\circ}C$	I _D	-127	mA
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		-91	
	t ≤ 5 s	$T_A = 25^{\circ}C$		-146	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	125	mW
	t ≤ 5 s			166	
Pulsed Drain Current	NMOS	t _p = 10 μs	I _{DM}	846	mA
		-488			
Source Current (Body I	I _S	200	mA		
		-200			
Operating Junction and	T _J , T _{STG}	-55 to 150	°C		
Lead Temperature for S (1/8" from case for 10 s	TL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

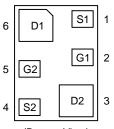


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max		
	1.5 Ω @ 4.5 V			
N-Channel 20 V	2.0 Ω @ 2.5 V	220 mA		
	3.0 Ω @ 1.8 V	220 IIIA		
	4.5 Ω @ 1.5 V			
	5.0 Ω @ -4.5 V			
P-Channel -20 V	6.0 Ω @ -2.5 V	–127 mA		
	7.0 Ω @ –1.8 V	-127 IIIA		
	10.0 Ω @ –1.5 V			

DEVICE SYMBOL


XLLGA6 Case 713AC

MARKING DIAGRAM

F = Specific Device Code M = Date Code

PINOUT DIAGRAM

(Bottom View)

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
	$R_{ hetaJA}$	998 751	°C/W

^{2.} Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq), 1 oz copper

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	FET	Test Condition Min		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•	•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	N $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ P $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		20			V
		Р			-20			
Zero Gate Voltage Drain Current		N	V _{GS} = 0 V, V _{DS} = 5 V	T _J = 25°C			50	nA
				T _J = 85°C			200	
			V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			100	
		Р	$V_{GS} = 0 V$	T _J = 25°C			-50	
			$V_{DS} = -5 \text{ V}$	T _J = 85°C			-200	
			V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25°C			-100	
Gate-to-Source Leakage Current	I _{GSS}	N	$V_{GS} = 0 \text{ V}, V_{DS} = \pm 5 \text{ V}$ $V_{GS} = 0 \text{ V}, V_{DS} = \pm 5 \text{ V}$				±100	nA
		Р					±100	
ON CHARACTERISTICS								
Gate Threshold Voltage	V _{GS(TH)}	N	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		0.4		1.0	V
		Р	$V_{GS} = V_{DS}, I_{D} = -250 \mu\text{A}$		-0.4		-1.0	
Drain-to-Source On Resistance	R _{DS(ON)}	N	$V_{GS} = 4.5 \text{ V}, I_D = 100 \text{ mA}$			8.0	1.5	Ω
			$V_{GS} = 2.5 \text{ V}, I_D = 50 \text{ mA}$			1.1	2.0	
			$V_{GS} = 1.8 \text{ V}, I_D = 20 \text{ mA}$			1.4	3.0	
			$V_{GS} = 1.5 \text{ V}, I_D = 10 \text{ mA}$			1.8	4.5	- - -
		Р	$V_{GS} = -4.5 \text{ V}, I_D = -100 \text{ mA}$			2.1	5.0	
			$V_{GS} = -2.5 \text{ V}, I_D = -50 \text{ mA}$			2.7	6.0	
			$V_{GS} = -1.8 \text{ V}, I_D = -20 \text{ mA}$			3.6	7.0	
			$V_{GS} = -1.5 \text{ V}, I_D = -10 \text{ mA}$			4.2	10.0	
forward Transconductance g_{FS} N $V_{DS} = 5 \text{ V}, I_{C}$		= 125 mA		0.48		S		
		Р	$V_{DS} = -5 \text{ V}, I_{D}$			0.35		
Forward Diode Voltage	V_{SD}	N	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ mA}$			0.6	1.0	V
		Р	$V_{GS} = 0 \text{ V, } I_{S}$	= -10 mA		-0.6	-1.0	

^{3.} Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	FET	Test Condition	Min	Тур	Max	Unit
CAPACITANCES	·	•		•	•		
Input Capacitance	C _{ISS}	N	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = 15 \text{ V}$		12.3		pF
Output Capacitance	C _{OSS}				3.4		
Reverse Capacitance	C _{RSS}				2.5		
Input Capacitance	C _{ISS}	Р	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$ $V_{DS} = -15 \text{ V}$		12.8		
Output Capacitance	C _{OSS}		V _{DS} = -15 V		2.8		
Reverse Capacitance	C _{RSS}	1			2.0		
SWITCHING CHARACTERISTICS	S, V _{GS} = 4.5 V				•		
Turn-On Delay Time	t _{d(ON)}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$		16.5		ns
Rise Time	t _r	1	$I_D = 200 \text{ mA}, R_G = 2 \Omega$		25.5		
Turn-Off Delay Time	t _{d(OFF)}				142		
Fall Time	t _f	1			80		
Turn-On Delay Time	t _{d(ON)}	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_{D} = -200 \text{ mA}, R_{G} = 2 \Omega$		37		
Rise Time	t _r	1	$I_D = -200 \text{ mA}, R_G = 2 \Omega$		71		
Turn-Off Delay Time	t _d (OFF)	1			280		

^{3.} Switching characteristics are independent of operating junction temperatures.

 t_f

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

171

ORDERING INFORMATION

Fall Time

Device	Package	Shipping [†]
NTND31215CZTAG	XLLGA6 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS - P-CHANNEL

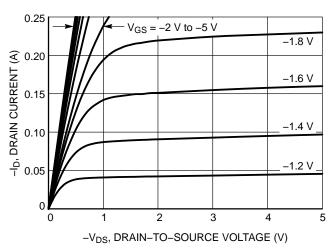


Figure 1. On-Region Characteristics

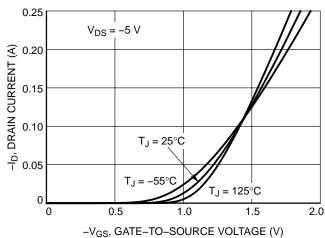


Figure 2. Transfer Characteristics

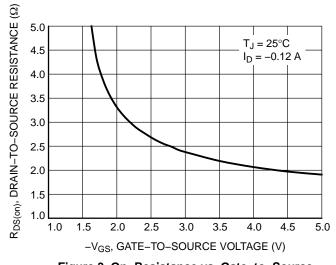


Figure 3. On–Resistance vs. Gate–to–Source Voltage

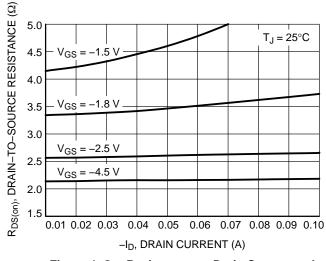


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

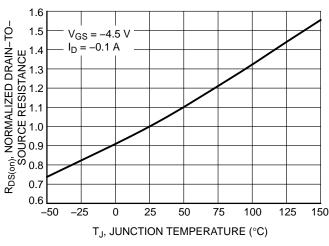


Figure 5. On–Resistance Variation with Temperature

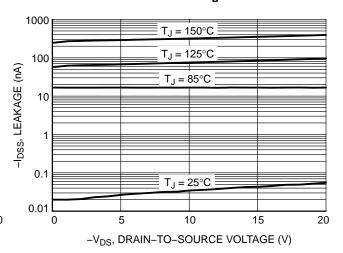
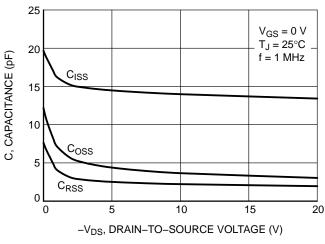



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - P-CHANNEL

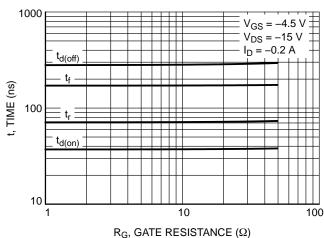


Figure 7. Capacitance Variation

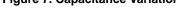


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

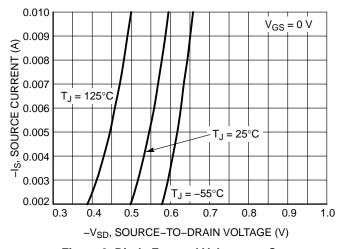


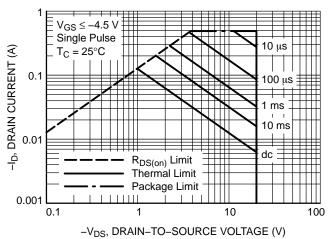
Figure 9. Diode Forward Voltage vs. Current

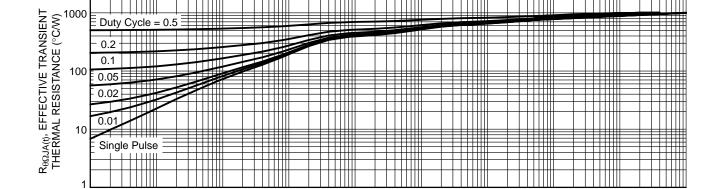
0.0001

0.001

0.000001

0.00001




Figure 10. Maximum Rated Forward Biased Safe Operating Area

10

1

100

1000

t, PULSE TIME (s) Figure 11. Thermal Response

0.1

0.01

TYPICAL CHARACTERISTICS - N-CHANNEL

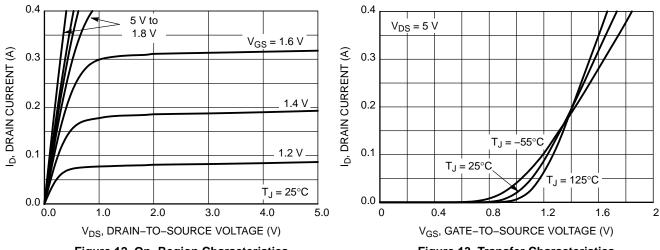


Figure 12. On-Region Characteristics

Figure 13. Transfer Characteristics

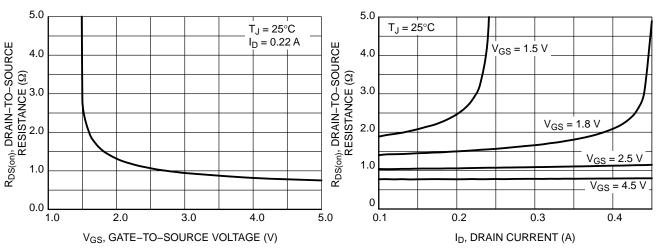


Figure 14. On-Resistance vs. Gate-to-Source Voltage

Figure 15. On–Resistance vs. Drain Current and Gate Voltage

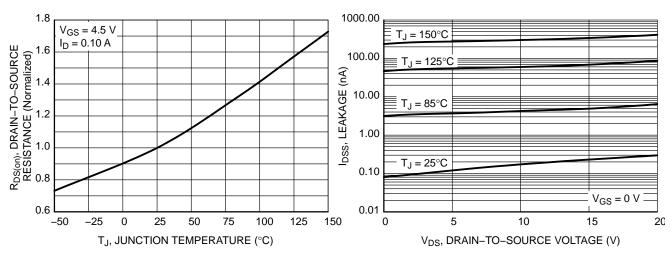


Figure 16. On–Resistance Variation with Temperature

Figure 17. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - N-CHANNEL

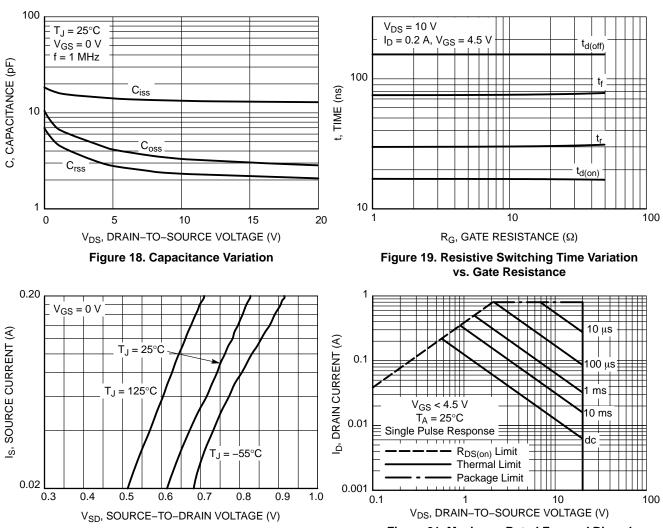
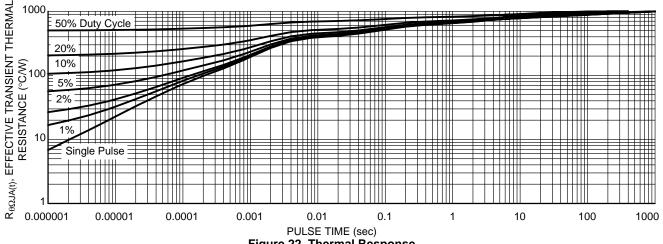
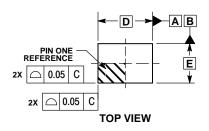
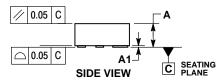
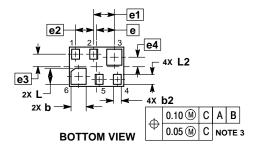


Figure 20. Diode Forward Voltage vs. Current

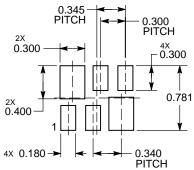
Figure 21. Maximum Rated Forward Biased Safe Operating Area


Figure 22. Thermal Response

PACKAGE DIMENSIONS

XLLGA6 0.90x0.65 CASE 713AC ISSUE O


NOTES:

- DIMENSIONING AND TOLERANCING PER
 ASME V14 FM 1994
- ASME Y14.5M, 1994 .

 2. CONTROLLING DIMENSION: MILLIMETERS.
- POSITIONAL TOERANCE APPLIES TO ALL SIX LEADS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.340	0.440			
A1	0.000	0.050			
b	0.200	0.300			
b2	0.080	0.180			
D	0.900 BSC				
E	0.650 BSC				
е	0.295	BSC			
e1	0.340 BSC				
e2	0.300 BSC				
е3	0.208 BSC				
e4	0.158 BSC				
L	0.215	0.315			
L2	0.115	0.215			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative