

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BVDSs	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	30	-	-	V
I DSs	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{C}}=150^{\circ}$	-	-	250	
$I_{\text {GSS }}$	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	-	3	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=35 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.018	0.022	Ω
		$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	-	0.028	0.033	

Dynamic Characteristics

$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$			970		pF
$\mathrm{C}_{\text {OSS }}$	Output Capacitance			-	205	-	pF
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance				80	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$		18	27	nC
$\mathrm{Q}_{\mathrm{g}(5)}$	Total Gate Charge at 5V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 5 V		-	9	14	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 1V		-	1.0	1.5	nC
Q_{gs}	Gate to Source Gate Charge			-	3.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	3.0	-	nC

Switching Characteristics ($\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$)

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=16 \Omega \end{aligned}$	-	-	87	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	11	-	ns
t_{r}	Rise Time		-	47	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		-	24	-	ns
t_{f}	Fall Time		-	28	-	ns
tofF	Turn-Off Time		-	-	78	ns

Switching Characteristics $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=16 \Omega \end{aligned}$	-	-	54	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	7	-	ns
t_{r}	Rise Time		-	29	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		-	45	-	ns
t_{f}	Fall Time		-	27	-	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time		-	-	108	ns

Unclamped Inductive Switching

t_{AV}	Avalanche Time	$\mathrm{I}_{\mathrm{D}}=2.7 \mathrm{~A}, \mathrm{~L}=3 \mathrm{mH}$	180	-	-	$\mu \mathrm{s}$

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=10 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	25	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=20 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	17	nC

Typical Characteristic

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristic (Continued)

Figure 5. Transfer Characteristics

Figure 7. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 6. Saturation Characteristics

Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature

Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Typical Characteristic (Continued)

Figure 11. Capacitance vs Drain to Source Voltage

Figure 13. Switching Time vs Gate Resistance

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 12. Gate Charge Waveforms for Constant Gate Currents

Figure 14. Switching Time vs Gate Resistance

Figure 16. Unclamped Energy Waveforms

Figure 17．Gate Charge Test Circuit

Figure 19．Switching Time Test Circuit

Figure 18．Gate Charge Waveforms

Figure 20．Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that $T_{J M}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{Z_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of $P_{D M}$ is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta J A}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with $10 z$ copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Displayed on the curve are $R_{\theta J A}$ values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, $P_{\text {DM }}$.
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. $\mathrm{R}_{\theta \mathrm{JA}}$ is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads.

$$
\begin{equation*}
R_{\theta J A}=26.51+\frac{19.84}{(0.262+\text { Area })} \tag{EQ.2}
\end{equation*}
$$

AREA, TOP COPPER AREA (in^{2})
Figure 21. Thermal Resistance vs Mounting Pad Area

PSPICE Electrical Model

```
.SUBCKT ISL9N322AP3 213 ; rev April 2001
```

CA $1287 \mathrm{e}-10$
CB $15 \quad 147 \mathrm{e}-10$
CIN $689.1 \mathrm{e}-10$

EDS 148581
EGS 138681
ESG 610681
EVTHRES 6211981
EVTEMP 20618221
IT 8171

LDRAIN 25 1e-9
LGATE $194.53 \mathrm{e}-9$
LSOURCE $375.38 \mathrm{e}-9$

MMED 16688 MMEDMOD
MSTRO 16688 MSTROMOD
MWEAK 162188 MWEAKMOD
RBREAK 1718 RBREAKMOD 1
RDRAIN 5016 RDRAINMOD 1.2e-3
RGATE 9202.59
RLDRAIN 2510
RLGATE 1945.3
RLSOURCE 3753.8
RSLC1 551 RSLCMOD 1e-6
RSLC2 550 1e3
RSOURCE 87 RSOURCEMOD 1.3e-2
RVTHRES 228 RVTHRESMOD 1
RVTEMP 1819 RVTEMPMOD 1
S1A 612138 S1AMOD
S1B $1312 \quad 138$ S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD
VBAT 2219 DC 1
ESLC 5150 VALUE $=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51)))^{*}(\operatorname{PWR}(\mathrm{~V}(5,51) /(1 \mathrm{e}-6 * 110), 6))\right\}$
.MODEL DBODYMOD D $(\mathrm{IS}=8.3 \mathrm{e}-12 \mathrm{~N}=1.08 \mathrm{RS}=9.9 \mathrm{e}-3 \quad \mathrm{TRS} 1=8.9 \mathrm{e}-4 \quad \mathrm{TRS} 2=1 \mathrm{e}-6 \mathrm{XTI}=2.7 \mathrm{CJO}=6.2 \mathrm{e}-10 \mathrm{TT}=7 \mathrm{e}-11 \mathrm{M}$
= 0.62)
.MODEL DBREAKMOD D (RS = 6e-1 TRS1 = $1 \mathrm{e}-3$ TRS2 $=-8.5 \mathrm{e}-6$)
MODEL DPLCAPMOD D (CJO = 3.1e-10 $\mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{M}=0.46$)
.MODEL MMEDMOD NMOS (VTO = 1.95 KP = 3.5 IS = 1e-30 $\mathrm{N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=2.59)$
$. M O D E L$ MSTROMOD NMOS (VTO $=2.32 \mathrm{KP}=35 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u})$
MODEL MWEAKMOD NMOS (VTO $=1.6 \mathrm{KP}=0.05 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=25.9 \mathrm{RS}=0.1$)
.MODEL RBREAKMOD RES (TC1 = 1e-3 TC2 = -7e-7)
.MODEL RDRAINMOD RES (TC1 $=3.4 \mathrm{e}-2$ TC2 $=1 \mathrm{e}-4$)
.MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 $=-2.2 \mathrm{e}-3$ TC2 $=-8 \mathrm{e}-6$
.MODEL RVTEMPMOD RES (TC1 = -2e-3 TC2 = 1.05e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF $=0.1$ VON $=-4.0$ VOFF $=-1.5)$
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON =-1.5 VOFF = -4.0)
.MODEL S2AMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=-0.5 \mathrm{VOFF}=0.3)$
.MODEL S2BMOD VSWITCH (RON $=1 \mathrm{e}-5$ ROFF $=0.1$ VON $=0.3$ VOFF $=-0.5$)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

REV April 2001
template ISL9N322AP3 n2,n1,n3
electrical n2,n1,n3
\{
var i iscl
dp.. model dbodymod $=(i s l=8.3 \mathrm{e}-12, \mathrm{n} 1=1.08 \mathrm{rs}=9.9 \mathrm{e}-3, \mathrm{trs} 1=8.9 \mathrm{e}-4, \operatorname{trs} 2=1 \mathrm{e}-6, \mathrm{xti}=2.7, \mathrm{cjo}=6.2 \mathrm{e}-10, \mathrm{tt}=7 \mathrm{e}-11, \mathrm{~m}=0.62$)
dp.. model dbreakmod $=(r s=6 e-1, \operatorname{trs} 1=1 e-3, \operatorname{trs} 2=-8.5 e-6)$
dp..model dplcapmod $=(\mathrm{cjo}=3.1 \mathrm{e}-10$, isl $=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.46)$
m..model mmedmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=1.95, \mathrm{kp}=3.5$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
m..model mstrongmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=2.32, \mathrm{kp}=35$, is $=1 \mathrm{e}-30$, tox $=1$)
m. .model mweakmod $=($ type $=$ n, vto $=1.6, \mathrm{kp}=0.05$, is $=1 \mathrm{e}-30$, tox $=1$, rs $=0.1$)
sw_vcsp..model s1amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-4.0$, voff $=-1.5)$
sw_vcsp..model s1bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=-1.5$, voff $=-4.0)$
sw_vcsp..model s2amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-0.5$, voff $=0.3)$
sw_vcsp..model s2bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=0.3$, voff $=-0.5)$

c.ca $112 \mathrm{n} 8=7 \mathrm{e}-10$
c.cb n15 n14 = 7e-10
c.cin $\mathrm{n} 6 \mathrm{n} 8=9.1 \mathrm{e}-10$
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
I.Idrain n2 n5 = 1e-9
I.Igate n1 n9 $=4.53 \mathrm{e}-9$
I. Isource n3 n7 $=5.38 \mathrm{e}-9$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m.mstrong n16 n6 n8 n8 = model=mstrongmod, $l=1 u, w=1 u$ m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 = 1, tc1 $=1 \mathrm{e}-3, \mathrm{tc} 2=-7 \mathrm{e}-7$
res.rdrain n50 n16 $=1.2 \mathrm{e}-3$, tc1 $=3.4 \mathrm{e}-2, \mathrm{tc} 2=1 \mathrm{e}-4$
res.rgate n9 n20 $=2.59$
res.rldrain n2 n5 $=10$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=45.3$
res.rlsource n3 n7 = 53.8
res.rslc1 n5 n51 $=1 \mathrm{e}-6, \mathrm{tc} 1=1 \mathrm{e}-3$, tc2 $=1 \mathrm{e}-6$
res.rslc2 n5 n50 = 1e3
res.rsource $\mathrm{n} 8 \mathrm{n} 7=1.3 \mathrm{e}-2, \mathrm{tc} 1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvtemp n18 n19 = 1, tc1 $=-2 \mathrm{e}-3, \mathrm{tc} 2=1.05 \mathrm{e}-6$
res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1$, tc1 $=-2.2 \mathrm{e}-3$, tc2 $=-8 \mathrm{e}-6$
spe.ebreak n11 n7 n17 n18 = 32.08
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $v(n 51, n 50)=\left((v(n 5, n 51) /(1 e-9+a b s(v(n 5, n 51))))^{*}\left(\left(a b s\left(v(n 5, n 51)^{*} 1 e 6 / 110\right)\right)^{* *} 6\right)\right)$
\}

SPICE Thermal Model

REV 23 April 2001
ISL9N322AP3T
CTHERM1 th 6 1.3e-3
CTHERM2 65 1.5e-3
CTHERM3 54 1.6e-3
CTHERM4 43 1.7e-3
CTHERM5 32 5.8e-3
CTHERM6 2 tl 2e-2
RTHERM1 th $63.5 \mathrm{e}-3$
RTHERM2 $654.5 \mathrm{e}-3$
RTHERM3 54 6.2e-2 RTHERM4 $436.8 \mathrm{e}-1$ RTHERM5 32 8.1e-1 RTHERM6 2 tl $8.3 \mathrm{e}-1$

SABER Thermal Model

SABER thermal model ISL9N322AP3T template thermal_model th tl thermal_c th, tl
\{
ctherm.ctherm1 th $6=1.3 \mathrm{e}-3$
ctherm.ctherm2 $65=1.5 \mathrm{e}-3$ ctherm.ctherm3 $54=1.6 \mathrm{e}-3$ ctherm.ctherm4 $43=1.7 \mathrm{e}-3$ ctherm.ctherm5 $32=5.8 \mathrm{e}-3$ ctherm.ctherm6 $2 \mathrm{tl}=2 \mathrm{e}-2$
rtherm. therm1 th $6=3.5 \mathrm{e}-3$
rtherm. rth erm2 $65=4.5 \mathrm{e}-3$ rtherm. t therm3 $54=6.2 \mathrm{e}-2$ rtherm.rtherm4 $43=6.8 \mathrm{e}-1$ rtherm. $\mathrm{rtherm} 532=8.1 \mathrm{e}-1$ rtherm.rtherm6 $2 \mathrm{tl}=8.3 \mathrm{e}-1$
\}

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FAST ©	OPTOLOGICTM	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
Bottomless ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {TM }}$	STAR*POWER ${ }^{\text {TM }}$	
CoolFET ${ }^{\text {TM }}$	FRFET ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$	
CROSSVOLT ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	POP ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM }}$-3	
DenseTrench ${ }^{\text {TM }}$	GTOTM	Power247 ${ }^{\text {TM }}$	SuperSOTTM-6	
DOME ${ }^{\text {TM }}$	$\mathrm{HiSeC}^{\text {¹ }}$	PowerTrench ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	
EcoSPARK ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	QFET ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	LittleFET ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {™ }}$	
EnSigna ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$	
FACTM	MicroPak ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	SILENTSWITCHER ${ }^{\circledR}$	UltraFET ${ }^{\text {® }}$	
STAR*POWER is used under license				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

