1.8 V/2.5 V Differential 2 x 2 Crosspoint Switch with CML Outputs Clock/Data Buffer/Translator

Multi-Level Inputs w/ Internal Termination

NB7V72M

Description

The NB7V72M is a high bandwidth, low voltage, fully differential 2 x 2 crosspoint switch with CML outputs. The NB7V72M design is optimized for low skew and minimal jitter as it produces two identical copies of Clock or Data operating up to 5 GHz or 6.5 Gb/s, respectively. As such, the NB7V72M is ideal for SONET, GigE, Fiber Channel, Backplane and other clock/data distribution applications. The differential IN/\overline{IN} inputs incorporate internal 50 Ω termination resistors and will accept LVPECL, CML, or LVDS logic levels (see Figure 10). The 16 mA differential CML outputs provide matching internal 50 Ω terminations and produce 400 mV output swings when externally terminated with a 50 Ω resistor to V_{CC} (see Figure 11). The NB7V72M is the 1.8 V/2.5 V CML version of the NB7L72M and is offered in a low profile 3x3 mm 16–pin QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

The NB7V72M is a member of the GigaComm[™] family of high performance clock products.

Features

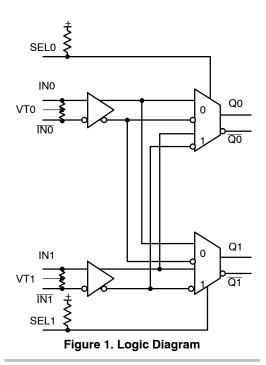
- Maximum Input Data Rate > 6.5 Gb/s
- Data Dependent Jitter < 15 ps pk-pk
- Maximum Input Clock Frequency > 5 GHz
- Random Clock Jitter < 0.8 ps RMS, Max
- 150 ps Typical Propagation Delay
- 30ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV peak-to-peak, typical
- Operating Range: $V_{CC} = 1.71 \text{ V}$ to 2.625 V with GND = 0 V
- Internal 50 Ω Input Termination Resistors
- QFN-16 Package, 3mm x 3mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM* 16 ■ NB7V 72M

ALYW=


QFN-16 MN SUFFIX CASE 485G

> A = Assembly Location L = Wafer Lot

Y = Year W = Work Week

= Pb-Free Package
 (Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

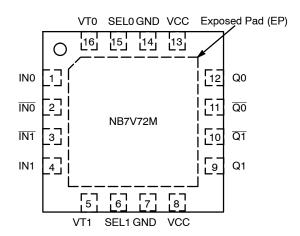


Table 1. INPUT/OUTPUT SELECT TRUTH TABLE

SEL0*	SEL1*	Q0	Q1
L	L	IN0	IN0
L	Н	IN0	IN1
Н	L	IN1	IN0
Н	Н	IN1	IN1

^{*}Defaults HIGH when left open

Figure 2. Pin Configuration (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
1	IN0	LVPECL, CML, LVDS Input	Noninverted Differential Input. (Note 1)
2	ĪN0	LVPECL, CML, LVDS Input	Inverted Differential Input. (Note 1)
3	ĪN1	LVPECL, CML, LVDS Input	Inverted Differential Input. (Note 1)
4	IN1	LVPECL, CML, LVDS Input	Noninverted Differential Input. (Note 1)
5	VT1	-	Internal 50 Ω Termination Pin for IN1 and $\overline{\text{IN1}}$
6	SEL1	LVCMOS Input	Input Select logic pin for IN0 or IN1 Inputs to Q1 output. See Table 1, Input/Output Select Truth Table; pin defaults HIGH when left open.
7	GND		Negative Supply Voltage
8	VCC	-	Positive Supply Voltage
9	Q1	CML Output	Noninverted Differential Output. (Note 1)
10	Q1	CML Output	Inverted Differential Output. (Note 1)
11	Q0	CML Output	Inverted Differential Output. (Note 1)
12	Q0	CML Output	Noninverted Differential Output. (Note 1)
13	VCC	-	Positive Supply Voltage
14	GND	-	Negative Supply Voltage
15	SEL0	LVCMOS Input	Input Select logic pin for IN0 or IN1 Inputs to Q0 output. See Table 1, Input/Output Select Truth Table; pin defaults HIGH when left open.
16	VT0	-	Internal 50 Ω Termination Pin for IN0 and $\overline{\text{IN0}}$
_	EP	-	The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and is recommended to be electrically and thermally connected to GND on the PC board.

In the differential configuration when the input termination pins (VT0, VT1) are connected to a common termination voltage or left open, and if no signal is applied on INx/INx input, then the device will be susceptible to self–oscillation.

2. All VCC and GND pins must be externally connected to a power supply for proper operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	> 4 kV > 200 V
R _{PU} – Input Pullup Resistor	75 kΩ
Moisture Sensitivity 16-QFN	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	210
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	<u> </u>

For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		3.0	V
V _{IN}	Positive Input Voltage	GND = 0 V		-0.5 to V _{CC} +0.5	V
V _{INPP}	Differential Input Voltage IN − IN			1.89	V
I _{IN}	Input Current Through R_T (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	QFN-16 QFN-16	42 35	°C/W °C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case) (Note 3)		QFN-16	4	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

 $\textbf{Table 5. DC CHARACTERISTICS, Multi-Level Inputs} \ V_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ GND = 0 \ V, \ T_A = -40 ^{\circ}C \ to \ +85 ^{\circ}C \ (Note \ 4) \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ GND = 0 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2.625 \ V, \ T_{CC} = 1.71 \ V \ to \ 2$

Symbol	Characteristic	Min	Тур	Max	Unit
POWER	SUPPLY CURRENT				•
I _{CC}	Power Supply Current (Inputs and Outputs Open) $V_{CC} = 2.5 \text{ V}$ $V_{CC} = 1.8 \text{ V}$	120 80	145 110	170 140	mA
CML OUT	PUTS	_ .		Ч.	
V _{OH}	Output HIGH Voltage (Note 5)	V _{CC} – 40 2460 1760	V _{CC} – 20 2480 1780	V _{CC} 2500 1800	mV
V _{OL}	Output LOW Voltage (Note 5)	V _{CC} - 650 1850 1150	V _{CC} - 400 2100 1400	V _{CC} - 300 2200 1500	mV
IFFERE	NTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Note 6) (Figu	res 5 and 7)		•	
V_{th}	Input Threshold Reference Voltage Range (Note 7)	1050		V _{CC} – 100	mV
V_{IH}	Single-Ended Input HIGH Voltage	V _{th} + 100		V _{CC}	mV
V_{IL}	Single-Ended Input LOW Voltage	GND		V _{th} – 100	mV
V _{ISE}	Single-Ended Input Voltage (V _{IH} - V _{IL})	200		V _{CC} – GND	mV
DIFFERE	NTIAL DATA/CLOCK INPUTS DRIVEN DIFFERENTIALLY (Figur	es 6 and 8) (Note	8)		
V_{IHD}	Differential Input HIGH Voltage (INn, ĪNn)	1100		V _{CC}	mV
V_{ILD}	Differential Input LOW Voltage (INn, INn)	GND		V _{CC} – 100	mV
V_{ID}	Differential Input Voltage (INn, INn) (V _{IHD} - V _{ILD})	100		1200	mV
V_{CMR}	Input Common Mode Range (Differential Configuration, Note 9) (Figure 9)	1050		V _{CC} – 50	mV
I _{IH}	Input HIGH Current INn, INn (VTIN/VTIN Open)	-150		150	μΑ
I _{IL}	Input LOW Current INn, INn (VTIN/VTIN Open)	-150		150	μΑ
CONTRO	L INPUTS (SEL0, SEL1)				
V_{IH}	Input HIGH Voltage for Control Pins	V _{CC} x 0.65		V _{CC}	mV
V_{IL}	Input LOW Voltage for Control Pins	GND		V _{CC} x 0.35	mV
I _{IH}	Input HIGH Current	-150	20	150	μΑ
$I_{\rm IL}$	Input LOW Current	-150	5	150	μΑ
TERMINA	TION RESISTORS				
R _{TIN}	Internal Input Termination Resistor	40	50	60	Ω
R _{TOUT}	Internal Output Termination Resistor	40	50	60	Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit

- board with maintained transverse airflow greater than 500 lfpm.
 Input and output parameters vary 1:1 with V_{CC}.
 CML outputs loaded with 50 Ω to V_{CC} for proper operation.
 V_{th}, V_{IH}, V_{IL}, and V_{ISE} parameters must be complied with simultaneously.
 V_{th} is applied to the complementary input when operating in single-ended mode.
 V_{IHD}, V_{ILD}, V_{ID}, and V_{CMR} parameters must be complied with simultaneously.
 V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal.

Table 6. AC CHARACTERISTICS V_{CC} = 1.71 V to 2.625 V, GND = 0 V, T_A = -40°C to 85°C (Note 10)

Symbol	Characteristic		Min	Тур	Max	Unit
f _{MAX}	Maximum Input Clock Frequency V _{CC} V _{CC}	= 2.5 V = 1.8 V	5 4.5			GHz
f _{DATAMAX}	Maximum Operating Data Rate (PRBS23)		6.5			Gbps
V _{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$) fin \leq 5 GHz (See Figures 3 and 10, Note 11)		200	400		mV
t _{PLH} , t _{PHL}	Propagation Delay to Differential Outputs, @ 1GHz, Measured at Differential Cross-point INn/INn to Qn/Qn		110	150	200	ps
t _{PLH} TC	Propagation Delay Temperature Coefficient			50		∆fs/°C
tskew	Output-to-Output Skew (within device) (Note 12) Device-to-Device Skew (t _{pdmax} - t _{pdmin})				30 50	ps
t _{DC}	Output Clock Duty Cycle (Reference Duty Cycle = 50%) f _{in} ≤ 5GHz		45	50	55	%
t _{jitter}	RJ – Output Random Jitter (Note 13) f _{in} ≤ 5 GHz DJ – Deterministic Jitter (Note 14) ≤ 9 Gbps			0.5	0.8 10	ps RMS ps pk-pk
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 15)		100		1200	mV
t _{r,} , t _f	Output Rise/Fall Times @ 1 GHz (20% – 80%), Qn, Qn		20	30	50	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 10. Measured using a 400 mV source, 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC} . Input edge rates \geq 40 ps (20% 80%).
- 11. Output voltage swing is a single-ended measurement operating in differential mode.
- 12. Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when the delays are measured from cross–point of the inputs to the cross–point of the outputs.
- 13. Additive RMS jitter with 50% duty cycle clock signal.
- 14. Additive Peak-to-Peak data dependent jitter with input NRZ data at PRBS23.
- 15. Input voltage swing is a single-ended measurement operating in differential mode.

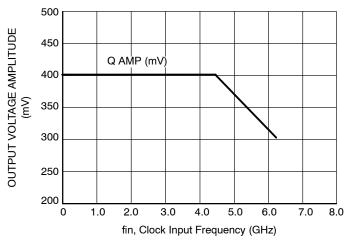


Figure 3. CLOCK Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ)

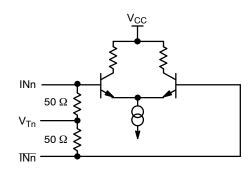


Figure 4. Input Structure

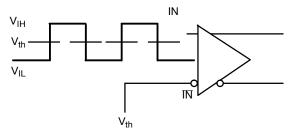


Figure 5. Differential Input Driven Single-Ended

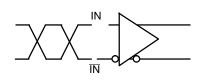


Figure 6. Differential Inputs Driven Differentially

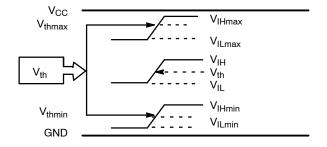


Figure 7. V_{th} Diagram

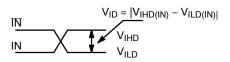


Figure 8. Differential Inputs Driven Differentially

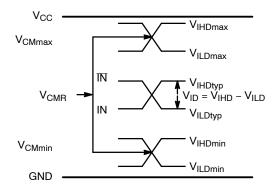


Figure 9. V_{CMR} Diagram

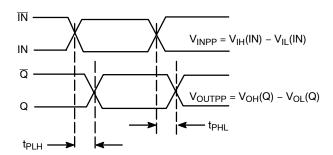


Figure 10. AC Reference Measurement

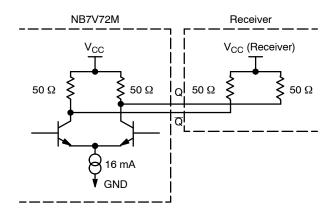


Figure 11. Typical CML Output Structure and Termination

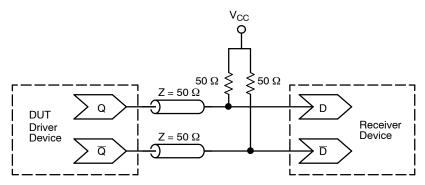


Figure 12. Typical Termination for CML Output Driver and Device Evaluation

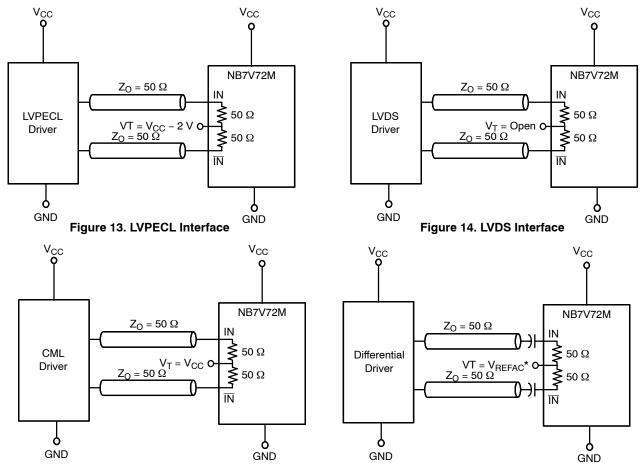


Figure 15. Standard 50 Ω Load CML Interface

Figure 16. Capacitor–Coupled
Differential Interface
(VT Connected to External V_{REFAC})
*V_{REFAC} bypassed to ground with a 0.01 μF capacitor

ORDERING INFORMATION

Device	Package	Shipping [†]
NB7V72MMNHTBG	QFN-16 (Pb-free)	100 / Tape & Reel
NB7V72MMNTXG	QFN-16 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

GigaComm is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

回

TOP VIEW

┅┅

SIDE VIEW

DETAIL B

LEA

A1

PIN ONE

LOCATION

2X 0.10 C


2X 0.10 C

// 0.05 C

□ 0.05 C

NOTE 4

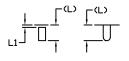
Α

В

SEATING PLANE

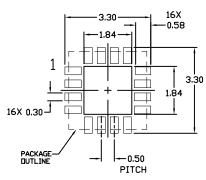
C

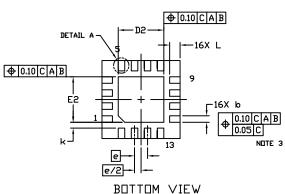
Ē


DATE 08 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS.
 THE TERMINALS.


DETAIL B
ALTERNATE
CONSTRUCTIONS



DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS

	MILLIME		
DIM	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00
A1	0.00	0.03	0.05
A3		0.20 REF	
b	0.18	0.24	0.30
D	3.00 BSC		
DS	1.65	1.75	1.85
Ε	3.00 BSC		
E2	1.65	1.75	1.85
e	0.50 BSC		
k	0.18 TYP		
L	0.30	0.40	0.50
L1	0.00	0.08	0.15

MOUNTING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
■ Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON04795D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	QFN16 3X3, 0.5P		PAGE 1 OF 1	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales