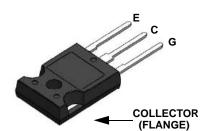
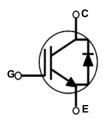


FGH40T65SPD_F085 650V, 40A Field Stop Trench IGBT

Features

- AEC-Q101 Qualified
- + Low Saturation Voltage : $V_{CE(sat)}$ = 1.85 V(Typ.) @ I_C = 40 A
- 100% of the parts are dynamically tested (Note 1)
- Short Circuit Ruggedness > 5 μs @ 25 °C
- Maximum Junction Temperature : T₁ = 175 °C
- Fast Switching
- Tight Parameter Distribution
- Positive Temperature Co-efficient for Easy Parallel Operating
- · Copacked with soft, fast recovery diode
- · RoHS Compliant




General Description

Using the novel field stop 3rd generation IGBT technology, FGH40T65SPD_F085 offers the optimum performance with both low conduction loss and switching loss for a high efficiency operation in various applications, while provides 50V higher blocking voltage and rugged high current switching reliability. Meanwhile, this part also offers and advantage of outstanding performance in parallel operation.

Applications

- Onboard Charger
- AirCon Compressor
- PTC Heater
- Motor Drivers
- Other automotive power-train appliactions

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage	650	V	
V _{GES}	Gate to Emitter Voltage	± 20	V	
	Transient Gate to Emitter Voltage		± 30	V
I _C	Collector Current	@ T _C = 25 °C	80	A
·C	Collector Current	@ T _C = 100 °C	40	A
I _{CM}	Pulsed Collector Current	(Note 2)	120	A
I _F	Diode Forward Current	@ T _C = 25 °C	40	A
	Diode Forward Current	@ T _C = 100 °C	20	A
I _{FM}	Pulsed Diode Maximum Forward Curren	t (Note 2)	120	A
D	Maximum Power Dissipation	@ T _C = 25 °C	267	W
P _D	Maximum Power Dissipation	@ T _C = 100 °C	134	W
SCWT	Short Circuit Withstand Time @ $T_C = 25 ^{\circ}C$		5	μs
TJ	Operating Junction Temperature	-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	300	°C	

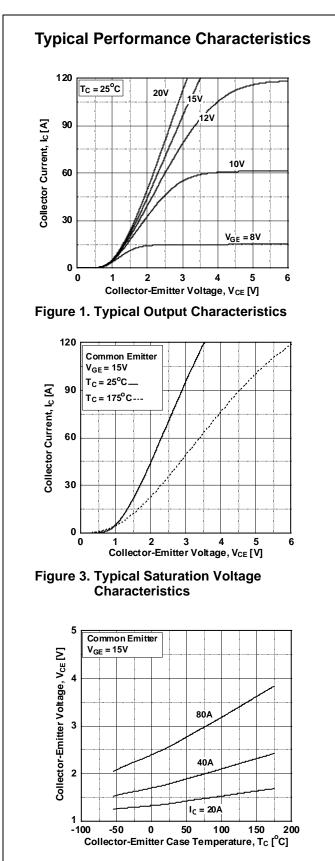
Notes:

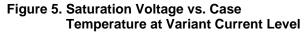
1: V_{CC} = 400 V, V_{GE} = 15 V, I_C = 120 A, R_G = 20 Ω , Inductive Load 2: Repetitive rating: pulse width limited by max. junction temperature

May 2016

Л
<u>Q</u>
4
ö
91
10T65S
SP
SPD
1
Ы
õ
G
F085 650V
Ő
40A
Ď
A Fiel
ie
d
S
đ
A Field Stop Tre
E.
ē
D
Ť
Trench IGBT
IGB
Ĩ

	I Character									
Symbo	bl	Paramete	r		Тур.		Max.	(Units	
$R_{\theta JC}(IGBT)$) Thermal Re	esistance, Junction to Ca	se			-	0.56		°C/W	
$R_{\theta JC}(Diode$	e) Thermal Re	esistance, Junction to Ca	se			-	1.71		°C/W	
R_{\thetaJA}	Thermal Re	esistance, Junction to An	nbient			-	40	°C/W		
Packag	e Marking a	and Ordering In	form	nation						
Devic	e Marking	Device		Package	;	Pacin	д Туре	Qty pe	r Tube	
FGH	40T65SPD	FGH40T65SPD_F0	85	TO-247 G0	3 Tube		ube	30ea		
Electric	al Characte	eristics of the I	GBT	T _C = 25 °C unless othe	erwise no	ted				
Symbol	Pa	irameter		Test Conditio	ons Min		. Тур.	Max.	Units	
Off Charac	teristics									
BV _{CES}	Collector to Emi	tter Breakdown Voltage	V _{GF} =	: 0V, I _C = 1mA		650	-	-	V	
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Co Voltage	efficient of Breakdown		$V_{GE} = 0V, I_C = 1mA$		-	0.6	-	V/ºC	
I _{CES}	Collector Cut-O	bllector Cut-Off Current		$V_{CE} = V_{CES}, V_{GE} = 0V$		-	-	250	μA	
I _{GES}	G-E Leakage C	urrent	$V_{GE} = V_{GES}, V_{CE} = 0V$		-	-	± 400	nA		
On Charac	teristics		_				1			
V _{GE(th)}	G-E Threshold	/oltage	ge $I_{C} = 40 \text{mA}, V_{CE} = V_{GE}$			4.0	5.5	7.5	V	
02(11)			$I_{\rm C} = 40$ A, $V_{\rm GE} = 15$ V		-	1.85	2.4	V		
V _{CE(sat)}	Collector to Emi	Collector to Emitter Saturation Voltage		$I_{C} = 40A, V_{GE} = 15V,$ $T_{C} = 175 \text{ °C}$		-	2.51	-	V	
Dynamic C	haracteristics									
C _{ies}	Input Capacitan	се				-	1518	-	pF	
C _{oes}	Output Capacita	utput Capacitance everse Transfer Capacitance		V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		-	91	-	pF	
C _{res}	Reverse Transfe					-	15	-	pF	
Switching	Characteristics						•			
T _{d(on)}	Turn-On Delay	Time				-	18	-	ns	
T _r	Rise Time		$V_{CC} = 400V, I_C = 40A,$ $R_G = 6\Omega, V_{GE} = 15V,$ Inductive Load, $T_C = 25$			-	42	-	ns	
T _{d(off)}	Turn-Off Delay	Time				-	35	-	ns	
T _f	Fall Time				0.0	-	10	-	ns	
Eon	Turn-On Switch	ing Loss			J.C	-	1.16	-	mJ	
E _{off}	Turn-Off Switch	ing Loss				-	0.27	-	mJ	
E _{ts}	Total Switching	Loss	1			-	1.43	-	mJ	
T _{d(on)}	Turn-On Delay	Time				-	16	-	ns	
T _r	Rise Time		$V_{CC} = 400V, I_C = 40A, R_G = 6\Omega, V_{GE} = 15V,$			-	40	-	ns	
T _{d(off)}	Turn-Off Delay	Time				-	37	-	ns	
Τ _f	Fall Time				E ⁰ C	-	11	-	ns	
Eon	Turn-On Switch	ing Loss	mauci	tive Load, T _C = 17	ິບ	-	1.59	-	mJ	
E _{off}	Turn-Off Switch	ing Loss	-			-	0.42	-	mJ	
E _{ts}	Total Switching	Loss				-	2.01	-	mJ	


FO
Ĭ
40
16
υ υ
H40T65SPD
F085 650V
ົດ
650
40
≥
Ē
Ъ
Ś
<u>6</u>
Ч Ч
ſre
ñ
40A Field Stop Trench I
ו IGB
BT


Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Units
Qg	Total Gate Charge		-	36	-	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400V, I _C = 40A, V _{GE} = 15V	-	11	-	nC
Q _{gc}	Gate to Collector Charge	VGE - 13V	-	12	-	nC

Electrical Characteristics of the Diode $T_{C} = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 20A	T _C = 25 °C	-	2.2	2.7	V
* FIM	2.000 Portana Ponago	·F _0/1	T _C = 175 °C	-	1.9	-	-
E _{rec}	Reverse Recovery Energy		T _C = 175 °C	-	51	-	μJ
T _{rr}	Diode Reverse Recovery Time	I _F = 20A,	T _C = 25 ^o C	-	35	-	ns
'm L		$dI_F/dt = 200A/\mu s$	T _C = 175 °C	-	214	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25 °C	-	58	-	μC
~ 11	2.000 Hororor Hororory Charge		T _C = 175 ^o C	-	776	-	

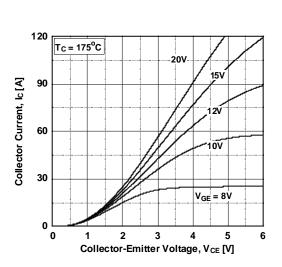


Figure 2. Typical Output Characteristics

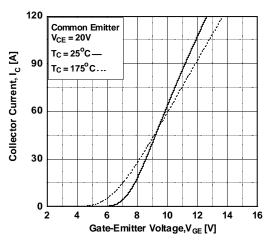
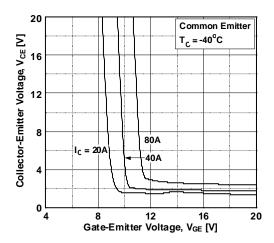
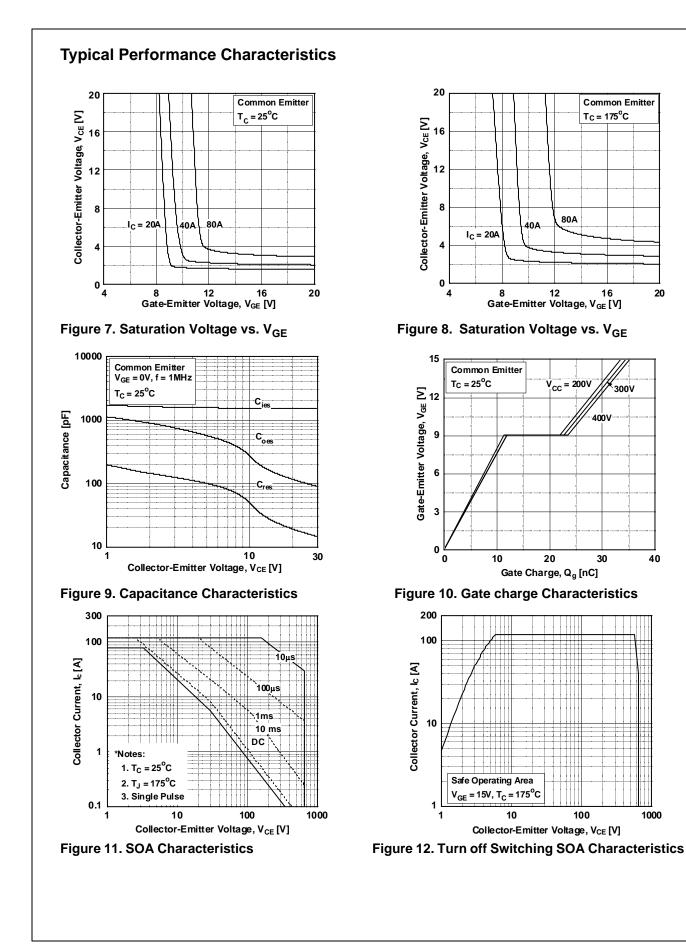
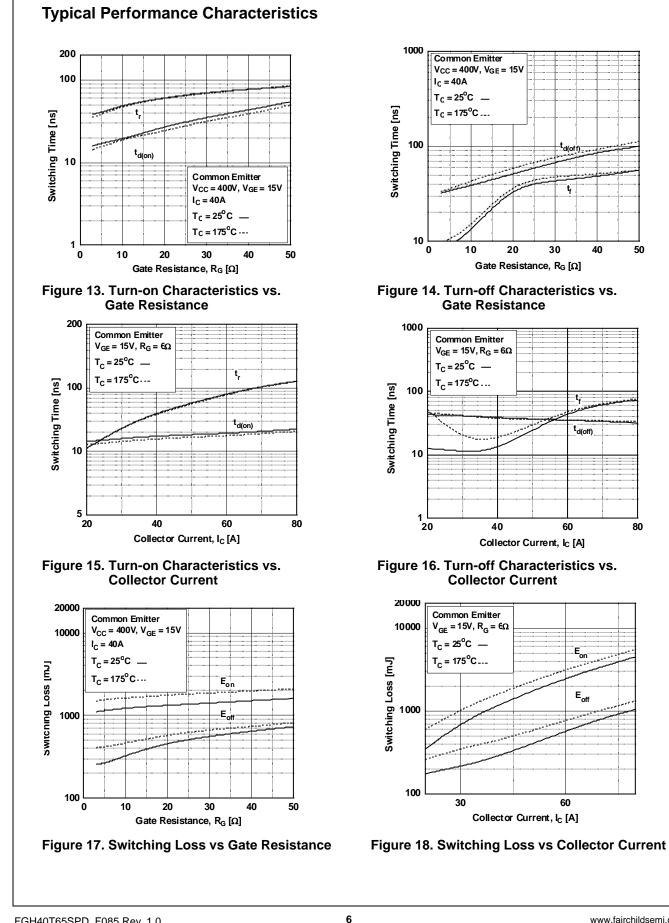
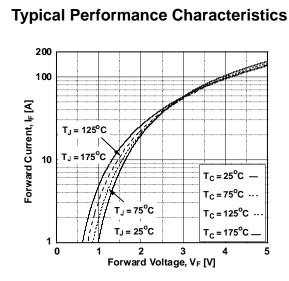




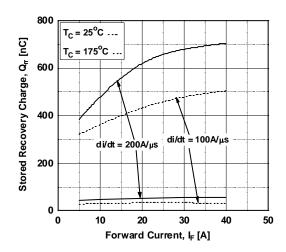
Figure 4. Transfer Characteristic

FGH40T65SPD_F085 650V 40A Field Stop Trench IGBT




FGH40T65SPD_F085 650V 40A Field Stop Trench IGBT

40


50

80

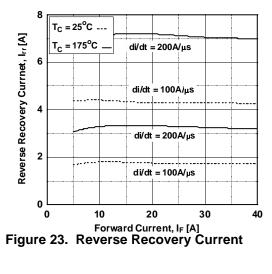


Figure 19. Forward Characteristics

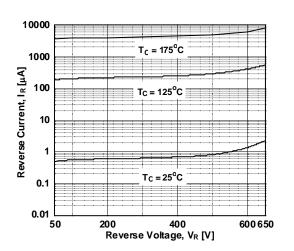


Figure 20. Reverse Current

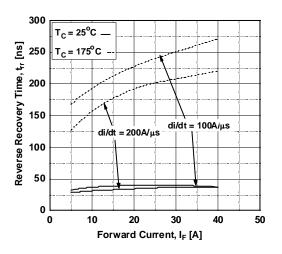
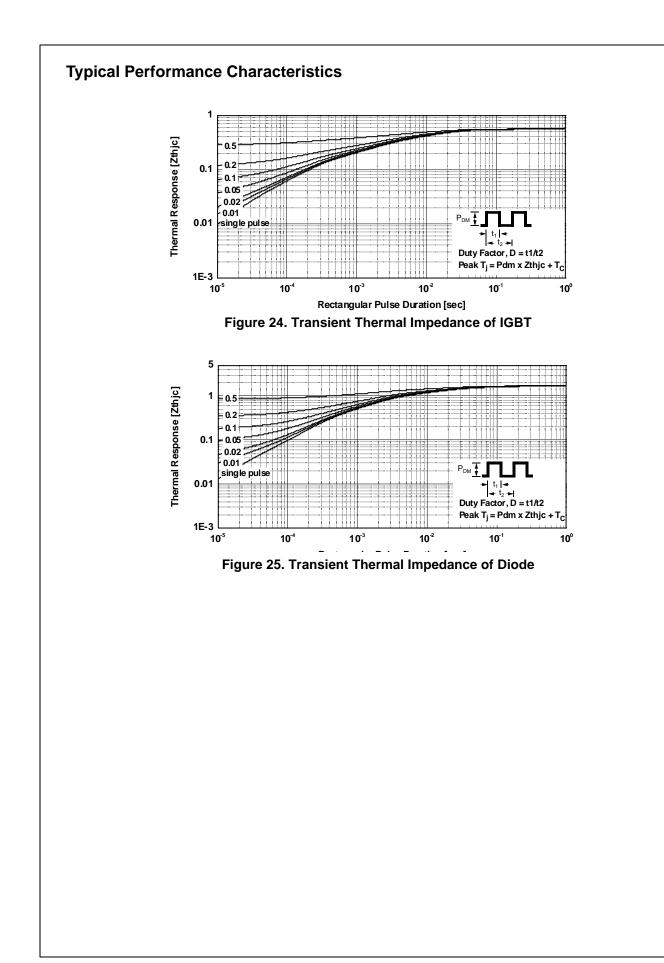
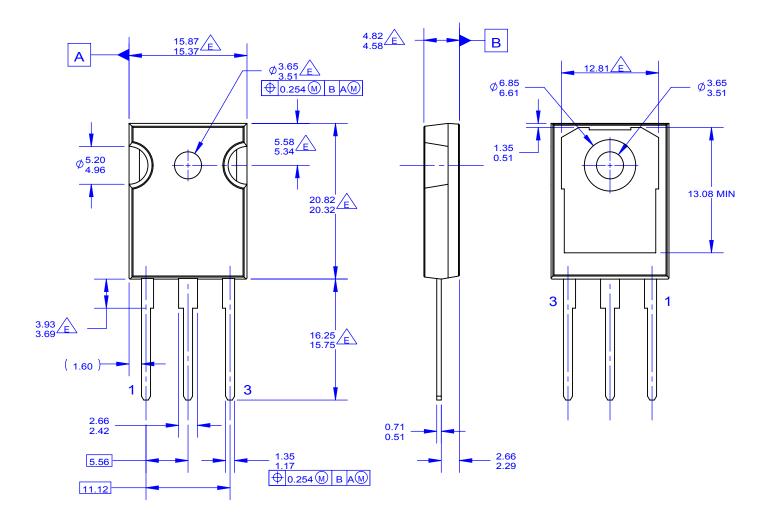
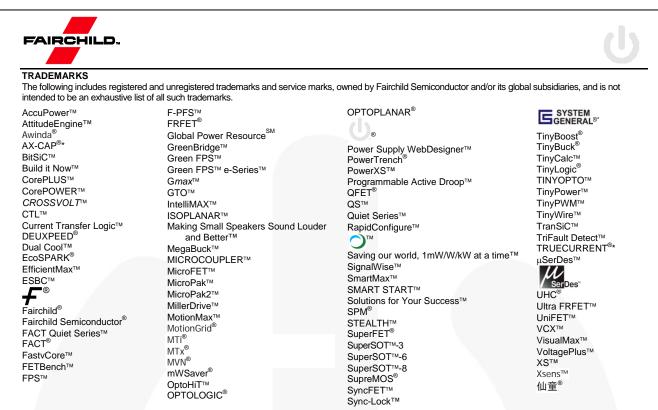




Figure 22. Reverse Recovery Time



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247A03_REV03

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177