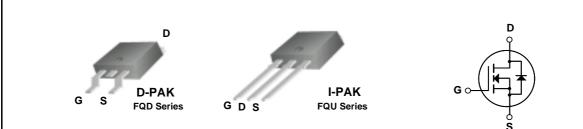


FQD1N60 / FQU1N60 **600V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.


Features

• 1.0A, 600V, $R_{DS(on)}$ = 11.5 Ω @V_{GS} = 10 V • Low gate charge (typical 5.0 nC)

April 2000

ТΜ

- Low Crss (typical 3.0 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

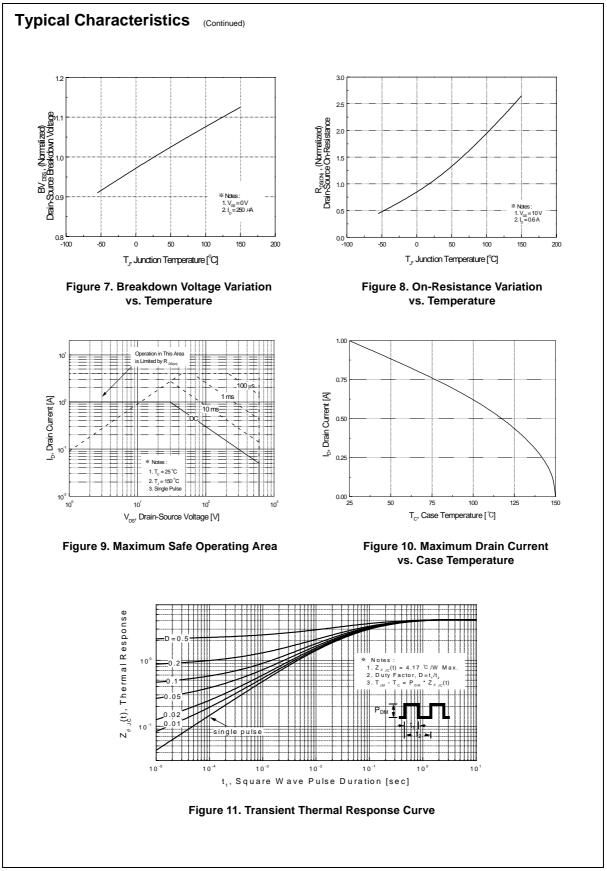
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQD1N60 / FQU1N60	Units
V _{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°	C)	1.0	А
	- Continuous (T _C = 100)°C)	0.63	А
I _{DM}	Drain Current - Pulsed	(Note 1)	4.0	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	50	mJ
I _{AR}	Avalanche Current	(Note 1)	1.0	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		30	W
	- Derate above 25°C		0.24	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

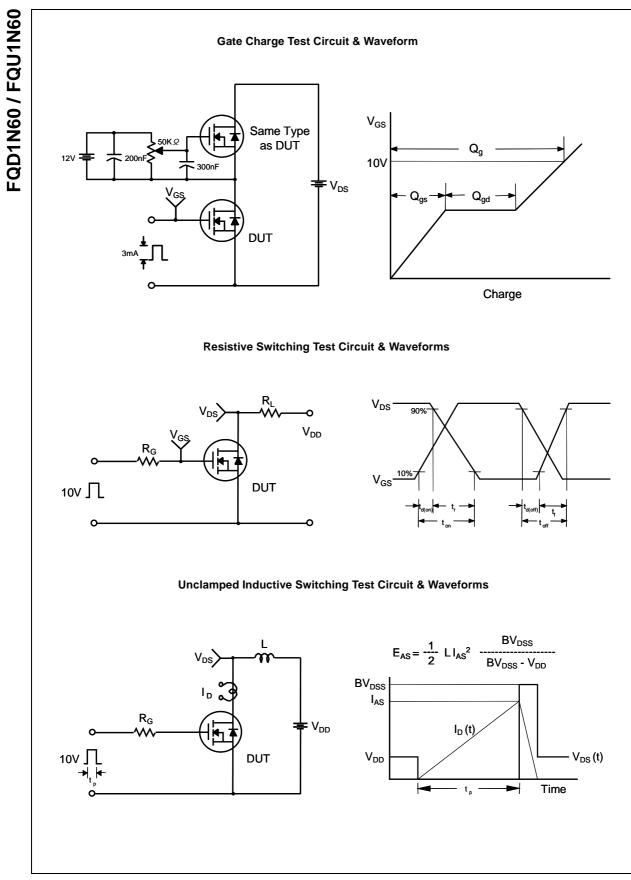
Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		4.17	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

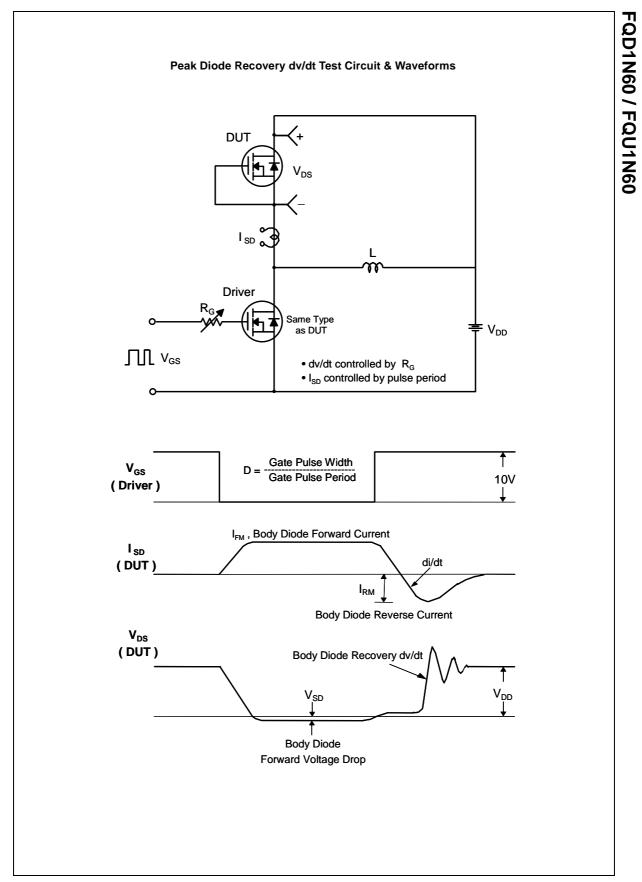
©2000 Fairchild Semiconductor International


	Parameter	Test Conditions		Min	Тур	Max	Units
Off Cha	aracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		600			V
ΔBV _{DSS} ′ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced		0.4		V/°C	
DSS	Zana Casta Maltana Duain Currant	$V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V}$			10	μA
	Zero Gate Voltage Drain Current	V _{DS} = 480 V, T _C = 125°C				100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA	
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA	
On Cha	racteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3.0		5.0	V	
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$		9.3	11.5	Ω	
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$	(Note 4)		0.83		S
-	ic Characteristics					1	
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		120	150	pF	
C _{oss}	Output Capacitance	f = 1.0 MHz		20	25	pF	
C _{rss}	Reverse Transfer Capacitance				3	4	pF
	ng Characteristics	T				1	1
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 1.2 A,	V _{DD} = 300 V, I _D = 1.2 A,		5	20	ns
t _r	Turn-On Rise Time	R _G = 25 Ω			25	60	ns
t _{d(off)}	Turn-Off Delay Time	-	(Note 4, 5)		7	25	ns
t _f	Turn-Off Fall Time		(14010 4, 3)		25	60	ns
Qg	Total Gate Charge	$V_{DS} = 480 \text{ V}, \text{ I}_{D} = 1.2 \text{ A},$			5	6	nC
-	Gate-Source Charge	V _{GS} = 10 V	(Note 4 E)		1		nC
Q _{gs}	Gate-Drain Charge	(Note 4, 5)			2.6		nC
Q _{gs}							
Q _{gs} Q _{gd}		nd Maximum Rating	5				
Q _{gs} Q _{gd} Drain-S	ource Diode Characteristics an Maximum Continuous Drain-Source Dio	-	5			1.0	A
Q _{gs} Q _{gd} Drain-S	ource Diode Characteristics a	ode Forward Current	5			1.0 4.0	A
Q _{gs} Q _{gd} Drain-S I _S I _{SM}	Ource Diode Characteristics an Maximum Continuous Drain-Source Dio	ode Forward Current	6	 			
Q _{gs} Q _{gd} Drain-S	Gource Diode Characteristics and Maximum Continuous Drain-Source Dio Maximum Pulsed Drain-Source Diode F	ode Forward Current Forward Current	5			4.0	А

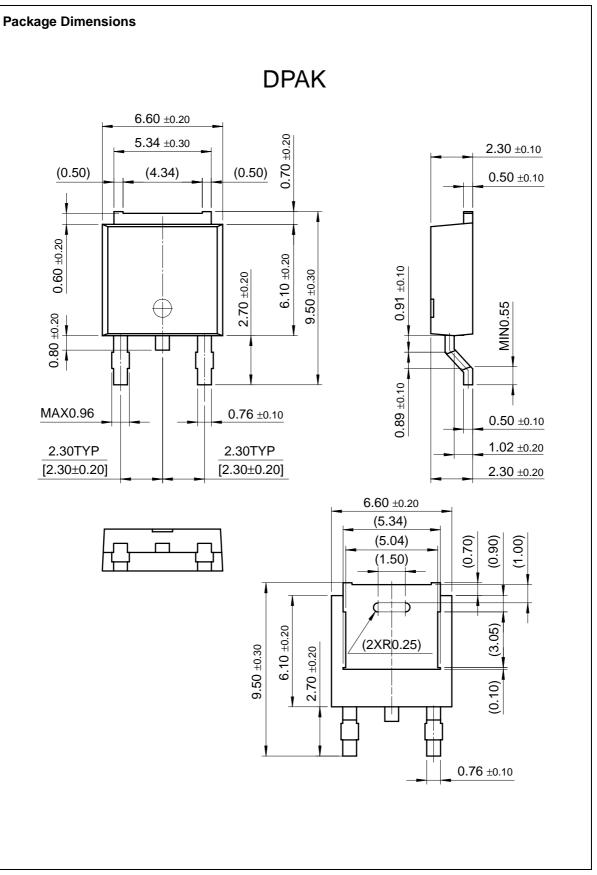
FQD1N60 / FQU1N60

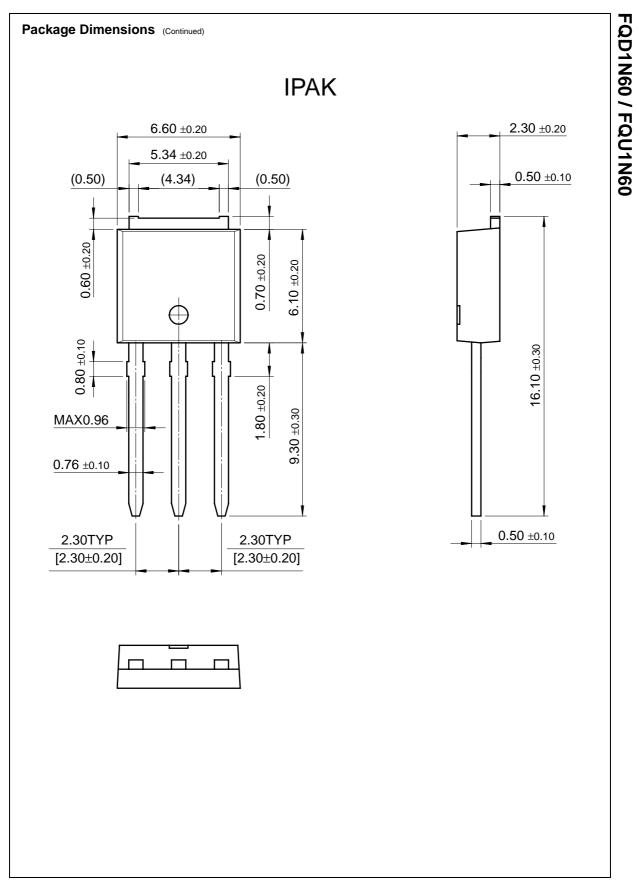

FQD1N60 / FQU1N60

Typical Characteristics 15.0 10.0 8.0 7.0 6.5 6.0 5.5 V 10 I_b , Drain Qurrent [A] l₀, Drain Current [A] 150°C 25°C 1. 250 //s Pulse Tes 2. T_c = 25°C 1. V_{DS} = 50V 2. 250 //s Pui 10 10⁻¹ L 4 6 V_{GS} , Gate-Source Voltage [V] 10 10 10 8 10 V_{DS'} Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 30 25 I_{DR} , Reverse Drain Qurrent [A] R_{DS(0N)} [^[2]], Drain-Source On-Resistance 20 10 15 10 150°C Note 1. V_{GS} = 0V 2. 250 µs Put ℜ Note : T_j = 25 °C 1 0 0.0 0.5 2.0 10⁻¹ 0.2 1.0 1.5 2.5 0.4 1.2 1.4 0.6 0.8 1.0 1.6 $I_{_{D}}$, Drain Current [A] V_{sp}, Source-Drain Voltage [V] Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage Drain Current and Gate Voltage Variation vs. Source Current and Temperature 20 12 + C_{gd} (C_{ds} + C V_{DS} = 120V V_{DS} = 300V 150 V_{GS}, Gate-Source Voltage [V] $V_{DS} = 480V$ Capacitance [pF] 1. V_{GS}=0 V 2. f=1 MHz 50 ※ Note : I_D = 1.2 A 0 L 2 10⁰ 10¹ $\rm Q_{_{\!G}^{\!}},$ Total Gate Charge [nC] V_{DS'} Drain-Source Voltage [V] Figure 6. Gate Charge Characteristics Figure 5. Capacitance Characteristics


©2000 Fairchild Semiconductor International

FQD1N60 / FQU1N60




Rev. A, April 2000

Rev. A, April 2000

Rev. A, April 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM E^2 CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FASTrTM GTOTM HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor		sSEARCH <u>Parametr</u>	ric Cross Reference
	Home >> Find products >>		
find products Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory Optoelectronics Markets and applications New products Product selection and parametric search Cross-reference search	Home >> Find products >>FQU1N60 600V N-Channel QFETContents General description Features Product status/pricing/packaging ModelsGeneral descriptionThese N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	"Related Links Request samples Dotted line How to order products Dotted line Product Change Notices (PCNs) Dotted line Support Dotted line Support Distributor and field sales representatives Dotted line Quality and reliability Design tools
buy products	and commutation mode. These devices are well suited for high efficiency switch mode power		
technical support	supply.	-	
my Fairchild	- back to top		
company			
	Features		

- 1.0 A, 600 V. $R_{DS(ON)} = 11.5 \Omega @ V_{GS}$ = 10 V
- Low gate charge (typical 5.0 nC).
- Low Crss (typical 3.0 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQU1N60TU	Full Production	\$0.425	TO-251(IPAK)	3	RAIL

Product Folder - Fairchild P/N FQU1N60 - 600V N-Channel QFET

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-251(IPAK)-3	Electrical/Thermal	-55°C to 150°C	9.2	Aug 6, 2001

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor