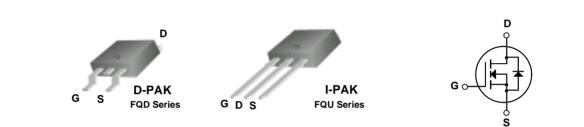


SEMICONDUCTOR TM

FQD2N60 / FQU2N60

600V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

Features

- 2.0A, 600V, $R_{DS(on)} = 4.7\Omega @V_{GS} = 10 V$ Low gate charge (typical 9.0 nC)
- Low Crss (typical 5.0 pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

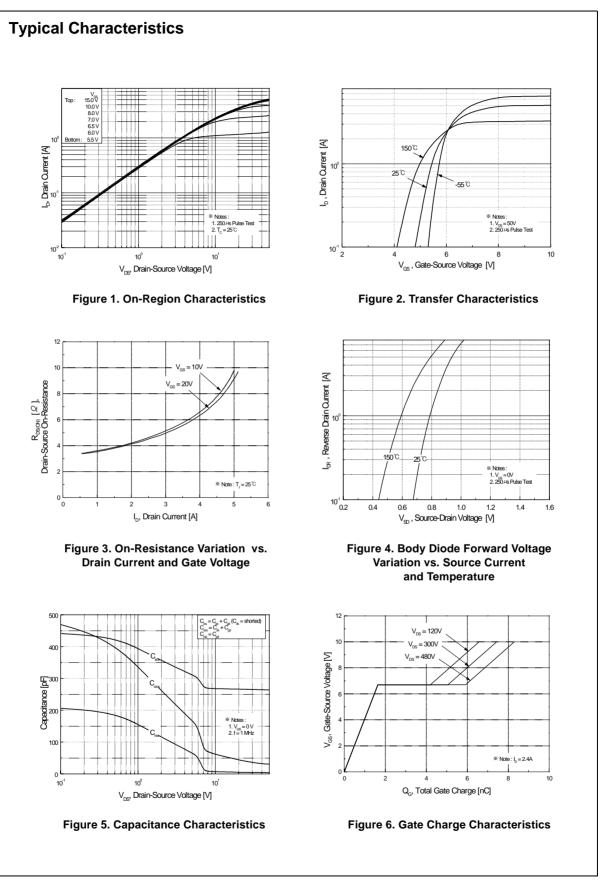
Symbol	Parameter		FQD2N60 / FQU2N60	Units	
V _{DSS}	Drain-Source Voltage		600	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		2.0	А	
			1.26	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	8.0	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		140	mJ	
I _{AR}	Avalanche Current (Note 1)		2.0	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.5	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5	V/ns	
PD	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W	
	Power Dissipation ($T_C = 25^{\circ}C$)		45	W	
	- Derate above 25°C	0.36	W/°C		
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

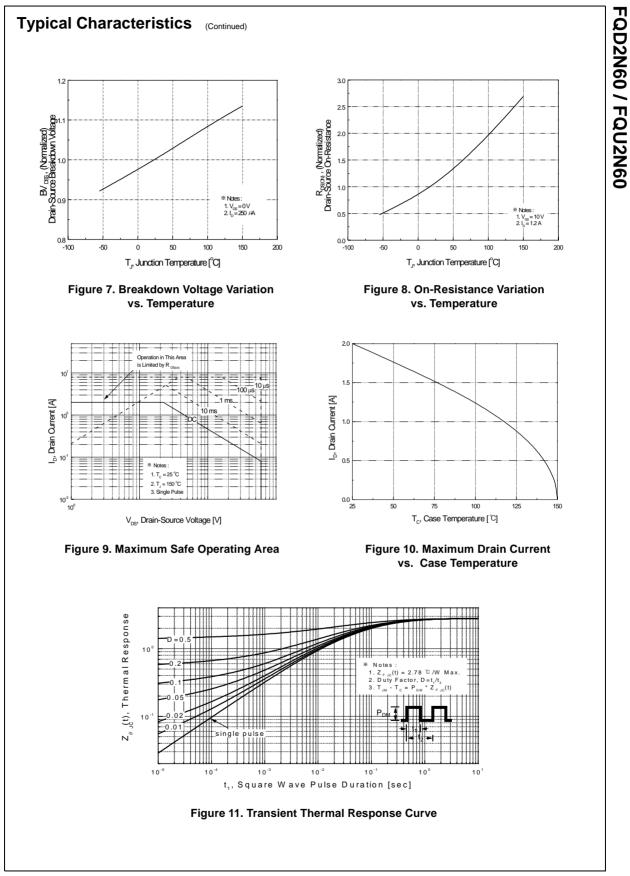
Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.78	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient		110	°C/W

©2000 Fairchild Semiconductor International

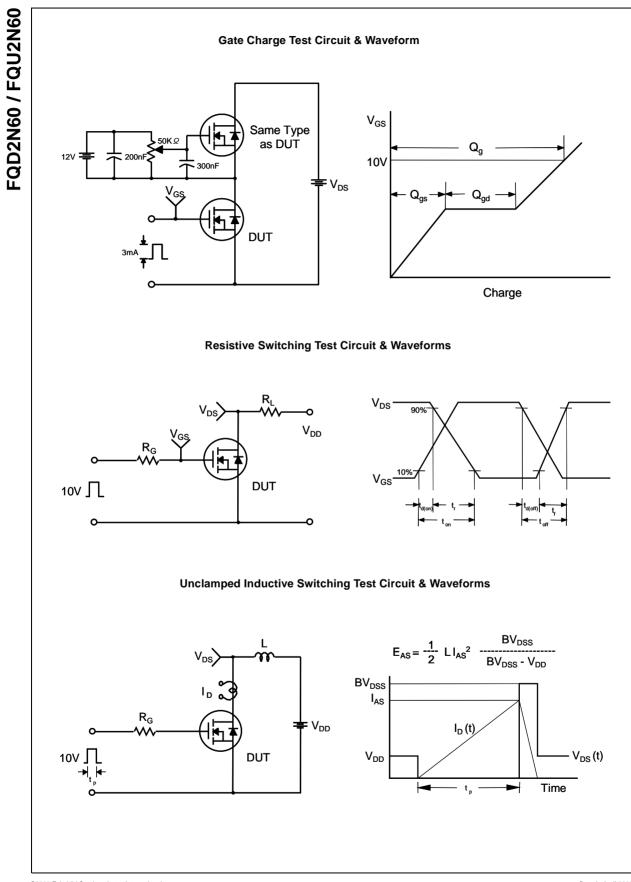
April 2000

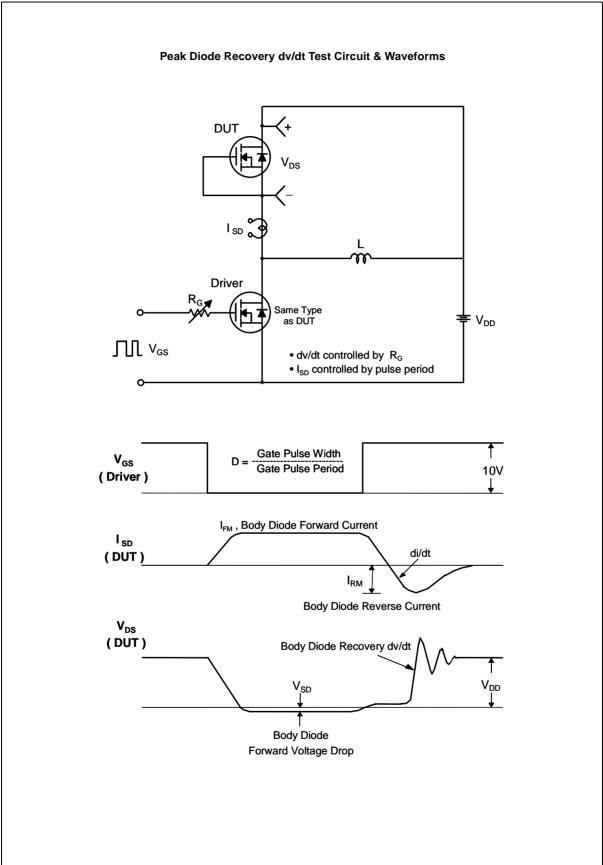

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Cha	aracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		600			V
ΔBV _{DSS} / ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to	o 25°C		0.4		V/°C
DSS		V _{DS} = 600 V, V _{GS} = 0 V				10	μA
	Zero Gate Voltage Drain Current	V _{DS} = 480 V, T _C = 125°C			100	μA	
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
On Cha	racteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$		3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 1.0 \text{ A}$			3.7	4.7	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 1.0 A	(Note 4)		2.25		S
C _{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			40 5	50 7	pF pF
C _{rss}	Reverse Transfer Capacitance			5	7	pF	
Switch	ing Characteristics						
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 2.4 A,			10	30	ns
t _r	Turn-On Rise Time	$R_{G} = 25 \Omega$			25	60	ns
t _{d(off)}	Turn-Off Delay Time				20	50	ns
-	Turn-Off Fall Time	(1	Note 4, 5)		25	60	ns
t _f	Total Gate Charge	V _{DS} = 480 V, I _D = 2.4 A,			9.0	11	nC
	Tetal Cate Charge	$V_{GS} = 10 \text{ V}$			1.6		nC
Q _g	Gate-Source Charge	V _{GS} = 10 V					nC
Q _g Q _{gs}	Gate-Source Charge		Note 4 5)		10		nc
Q _g Q _{gs} Q _{gd}		(1	Note 4, 5)		4.3		
Q _g Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge	nd Maximum Ratings			4.3	2.0	A
Q _g Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge	nd Maximum Ratings					A
Q _g Q _{gs} Q _{gd} Drain-S	Gate-Source Charge Gate-Drain Charge Gource Diode Characteristics an Maximum Continuous Drain-Source Dio	nd Maximum Ratings				2.0	
t_{f} Q_{g} Q_{gs} Q_{gd} Drain-S I_{S} I_{SM} V_{SD} t_{rr}	Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	nd Maximum Ratings ade Forward Current Forward Current				2.0 8.0	А

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 64mH, I_{AS} = 2.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 2.4A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS} Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

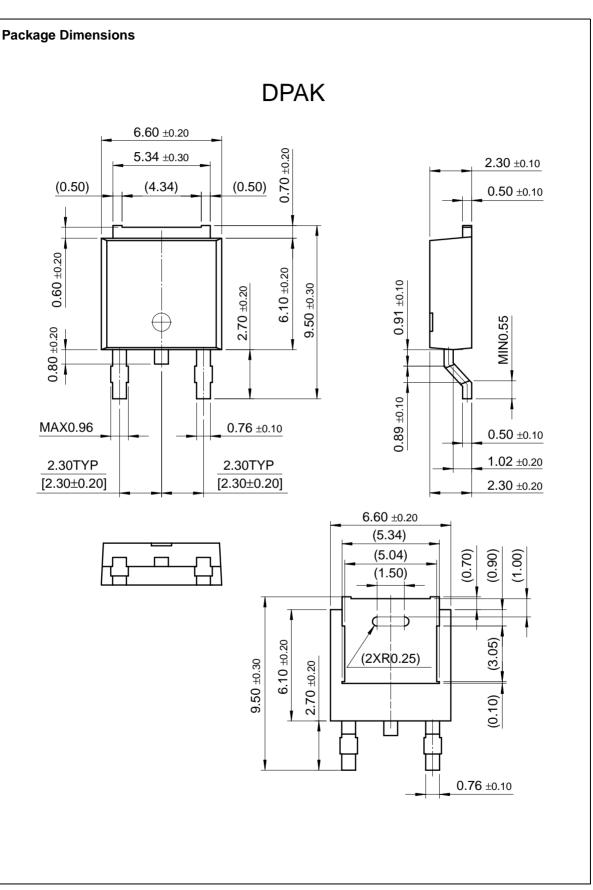

©2000 Fairchild Semiconductor International

FQD2N60 / FQU2N60

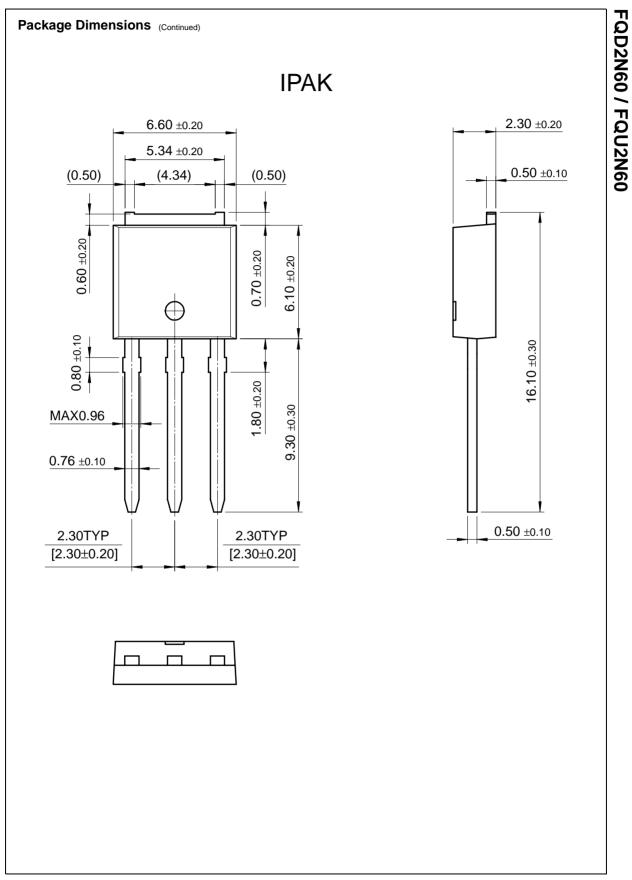

FQD2N60 / FQU2N60


©2000 Fairchild Semiconductor International

©2000 Fairchild Semiconductor International



©2000 Fairchild Semiconductor International



FQD2N60 / FQU2N60

FQD2N60 / FQU2N60

©2000 Fairchild Semiconductor International

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM E^2 CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor		-f	tric Cross Reference
find products Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory Optoelectronics Markets and applications New products Product selection and parametric search Cross-reference search	Home >> Find products >> FQD2N60 600V N-Channel QFET Contents General description Features Product. status/pricing/packaging General description These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	Related Links Request samples Datted line How to order products Datted line Product Change Notices (PCNs) Datted line Datted line Datted line Support Datted line Datted line Quality and field sales representatives Datted line Quality and reliability Design tools
my Fairchild company	Features		

- 2.0 A, 600 V. $R_{DS(ON)} = 4.7 \Omega @ V_{GS}$ = 10 V Low gate charge (typical 9.0 nC).Low Crss (typical 5.0 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQD2N60TF	Full Production	\$0.56	TO-252(DPAK)	2	TAPE REEL

FQD2N60TM	Full Production	\$0.56	TO-252(DPAK)	2	TAPE REEL
* 1,000 piece Budg	etary Pricing				

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor