FAIRCHILD

SEMICONDUCTOR TM

FQNL2N50B **500V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.

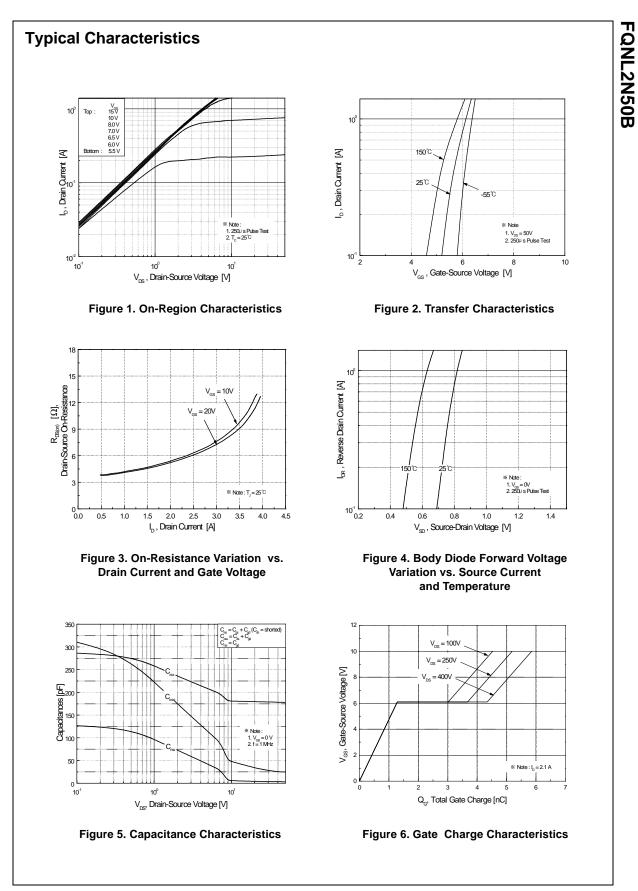
Features

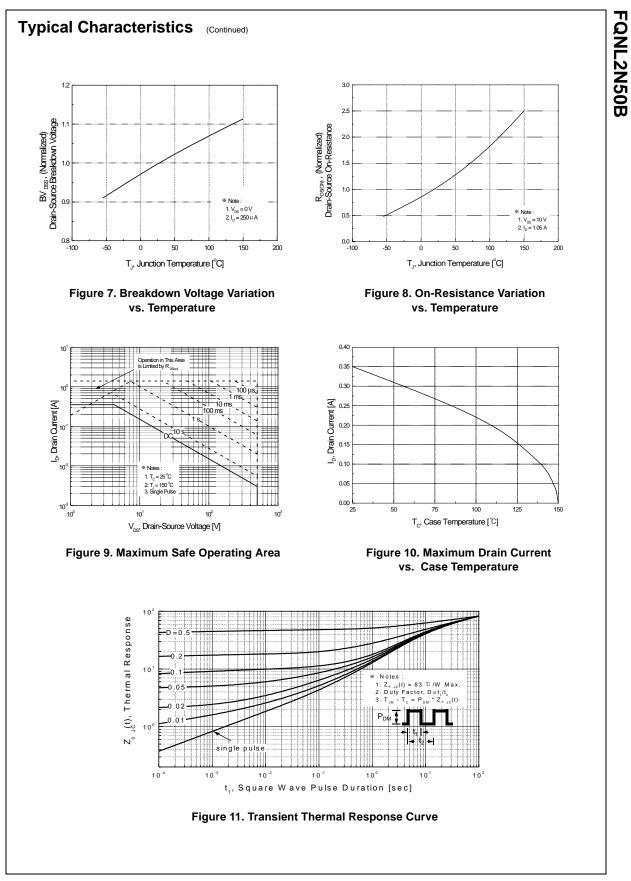
- 0.35A, 500V, $R_{DS(on)}$ = 5.3 Ω @V_{GS} = 10 V Low gate charge (typical 6.0 nC)
- Low Crss (typical 4.0 pF)
- Fast switching
- Improved dv/dt capability

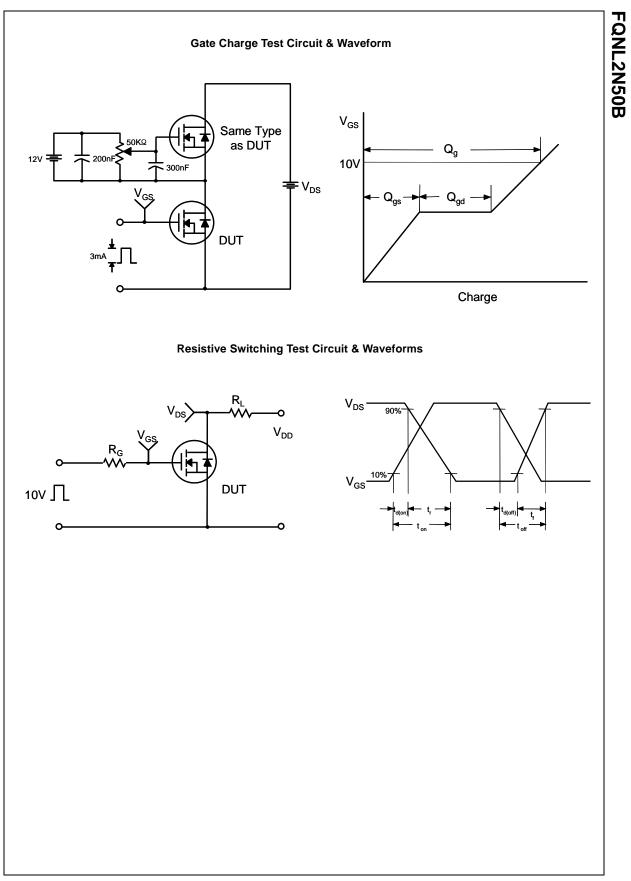
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

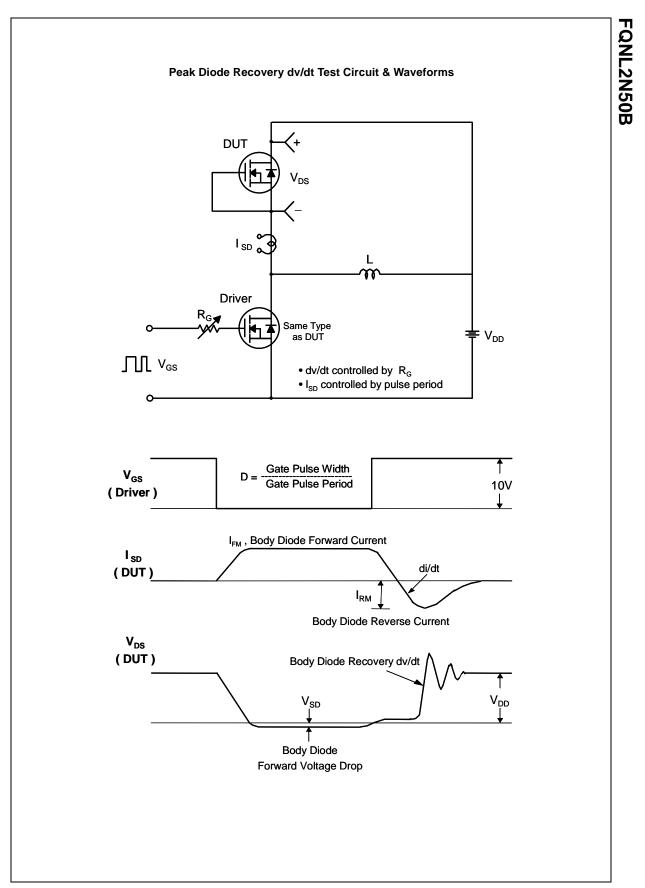
Symbol	Parameter		FQNL2N50B	Units	
V _{DSS}	Drain-Source Voltage		500	V	
I _D	Drain Current - Continuous (T _C = 25	°C)	0.35	A	
	- Continuous (T _C = 100°C)		0.22	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	1.4	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
I _{AR}	Avalanche Current	(Note 1)	0.35	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	0.15	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 2)	4.5	V/ns	
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		1.5	W	
	- Derate above 25°C		0.012	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TI	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	
. ר			500		

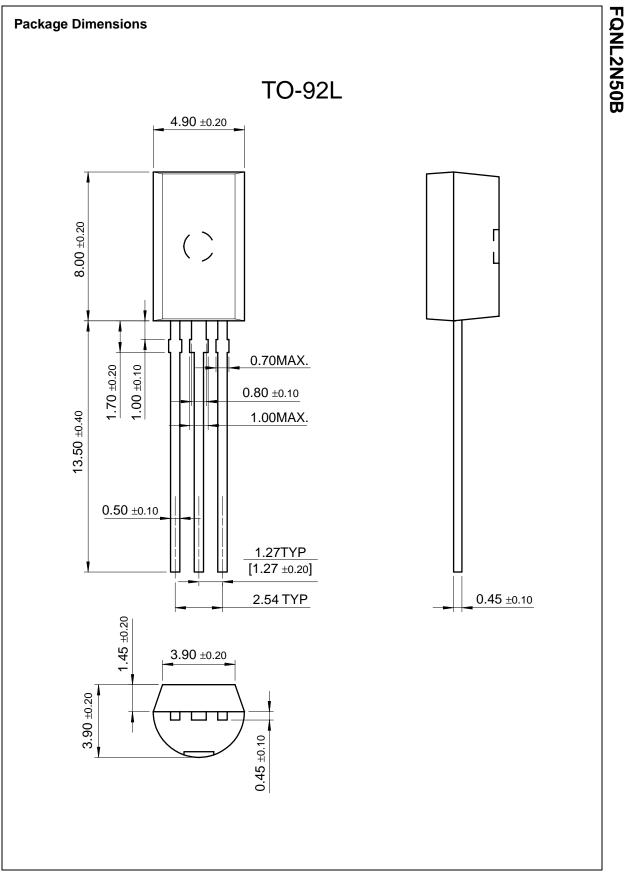
Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		83	°C/W


March 2001


FET™


acteristics Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse acteristics	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$ $I_{D} = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 500 \text{V}, \text{V}_{GS} = 0 \text{V}$ $V_{DS} = 400 \text{V}, \text{T}_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \text{V}, \text{V}_{DS} = 0 \text{V}$ $V_{GS} = -30 \text{V}, \text{V}_{DS} = 0 \text{V}$	500 	 0.48 		
Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 500 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 400 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$				
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 500 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 400 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$				V
Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse	$V_{DS} = 400 \text{ V}, T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				V/°C
Gate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			1	μA
Gate-Body Leakage Current, Reverse				10	μΑ
	$V_{00} = -30 V V_{00} = 0 V$			100	nA
acteristics	*GS = 00 1, *DS = 0 1			-100	nA
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.3	3.0	3.7	V
Gale Theshold Voltage		-			V
Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.175 \text{ A}$		4.2	5.3	Ω
	$V_{DS} = 50 \text{ V}, I_{D} = 0.175 \text{ A}$ (Note 3)		0.72		S
			190	220	۳E
					pF
· · ·	f = 1.0 MHz				pF pF
Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 2.1 \text{ A},$		6 25	20 60	ns ns
Turn-Off Delay Time	NG - 20 22		10	20	ns
			10	30	
Turn-Off Fall Time	(Note 3, 4)		20	50	ns
Turn-Off Fall Time Total Gate Charge					ns nC
	V _{DS} = 400 V, I _D = 2.1 A,		20	50	
Total Gate Charge			20 6.0	50 8.0	nC
Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DS} = 400 \text{ V}, I_D = 2.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3, 4)		20 6.0 1.3	50 8.0 	nC nC
Total Gate Charge Gate-Source Charge	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 2.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3, 4) nd Maximum Ratings		20 6.0 1.3	50 8.0 	nC nC
Total Gate Charge Gate-Source Charge Gate-Drain Charge Purce Diode Characteristics ar	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 2.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3, 4) Add Maximum Ratings add Forward Current		20 6.0 1.3 3.0	50 8.0 	nC nC nC
Total Gate Charge Gate-Source Charge Gate-Drain Charge Purce Diode Characteristics ar Maximum Continuous Drain-Source Dio	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 2.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3, 4) Add Maximum Ratings add Forward Current		20 6.0 1.3 3.0	50 8.0 0.35	nC nC nC
Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Dio Maximum Pulsed Drain-Source Diode F	$V_{DS} = 400 \text{ V}, I_D = 2.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 3, 4) nd Maximum Ratings ode Forward Current Forward Current		20 6.0 1.3 3.0 	50 8.0 0.35 1.4	nC nC nC A A
	On-Resistance Forward Transconductance Characteristics nput Capacitance Output Capacitance Reverse Transfer Capacitance g Characteristics Turn-On Delay Time Turn-On Rise Time	Dn-Resistance $V_{GS} = 10 \text{ V}, I_D = 0.175 \text{ A}$ Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 0.175 \text{ A}$ (Note 3)Characteristicsnput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ Dutput Capacitance $f = 1.0 \text{ MHz}$ Reverse Transfer Capacitance $V_{DD} = 250 \text{ V}, I_D = 2.1 \text{ A},$ Turn-On Delay Time $V_{DD} = 250 \text{ Q}$	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 0.175 \text{ A}$ Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 0.175 \text{ A}$ (Note 3)Characteristicsnput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ Dutput Capacitance $f = 1.0 \text{ MHz}$ Reverse Transfer Capacitanceg CharacteristicsTurn-On Delay Time $V_{DD} = 250 \text{ V}, I_D = 2.1 \text{ A},$ Turn-On Rise Time $R_G = 25 \Omega$	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 0.175 \text{ A}$ 4.2Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 0.175 \text{ A}$ (Note 3)0.72Characteristicsnput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 180Dutput Capacitance $f = 1.0 \text{ MHz}$ 30Reverse Transfer Capacitance4 Gharacteristics Turn-On Delay TimeTurn-On Rise Time $V_{DD} = 250 \text{ V}, I_D = 2.1 \text{ A},$ $R_G = 25 \Omega$ 25	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 0.175 \text{ A}$ 4.2 5.3 Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 0.175 \text{ A}$ (Note 3) 0.72 Characteristics VDS = 25 V, VGS = 0 V, f = 1.0 MHz 180 230 Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz 180 230 Reverse Transfer Capacitance $f = 1.0 \text{ MHz}$ 30 40 Reverse Transfer Capacitance $r = 0.175 \text{ A}$ 4 6 g Characteristics $r = 0.175 \text{ A}$ $r = 0.72 \text{ A}$ 4 6 Turn-On Delay Time $V_{DD} = 250 \text{ V}, I_D = 2.1 \text{ A},$ $r = 0.20 \text{ C}$ 20 25 60


FQNL2N50B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM Bottomless TM CoolFET TM CROSSVOLT TM DenseTrench TM DOME TM EcoSPARK TM E^2 CMOS TM EnSigna TM FACT TM	FAST [®] FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MICROWIRE™	OPTOPLANAR [™] PACMAN [™] POP [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SLIENT SWITCHER [®] SMART START [™]	SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] UHC [™] UHC [™] UltraFET [®] VCX [™]
FACT™ FACT Quiet Series™	MICROWIRE™ OPTOLOGIC™	SMART START™ Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor		-ſ	tric Cross Reference
find products Products groups	Home >> Find products >> FQNL2N50B		Related Links
Analog and Mixed	500V N-Channel QFET		Request samples
Signal Discrete Interface Logic Microcontrollers	Contents General description Features Product status/pricing/packaging	Datasheet <u>Download this</u> <u>datasheet</u> PDF	Dotted line How to order products Dotted line Product Change Notices (PCNs)
Non-Volatile Memory Optoelectronics Markets and	General description	e-mail this datasheet	Dotted line Support Dotted line Distributor and field sales representatives
<u>applications</u> <u>New products</u> <u>Product selection and</u> parametric search	These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.	This page <u>Print version</u>	Dotted line Quality and reliability Dotted line Design tools
Cross-reference search	This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and		
technical information	withstand high energy pulse in the avalanche and commutation mode. These devices are well		
buy products	suited for high efficiency switch mode power supply, power factor correction, electronic	-	
technical support my Fairchild	lamp ballast based on half bridge.		
company	back to top		

Features

• 0.35A, 500V,

 $R_{DS(on)} = 5.3\Omega @V_{GS} = 10 V$

- Low gate charge (typical 6.0 nC)
- Low Crss (typical 4.0 pF)
- Fast switching
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQNL2N50BBU	Full Production	\$0.319	<u>TO-92</u>	3	BULK

TAPE REEL
_