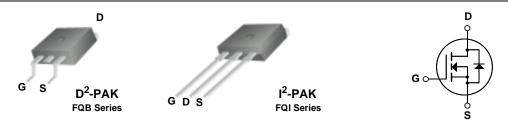


FQB17N08L / FQI17N08L

80V LOGIC N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for low voltage applications such as automotive, high efficiency switching for DC/DC converters, and DC motor control.

Features

- 16.5A, 80V, $R_{DS(on)} = 0.1\Omega$ @ $V_{GS} = 10$ V
- Low gate charge (typical 8.8 nC)
- Low Crss (typical 29 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- 175°C maximum junction temperature rating
- Low level gate drive requirements allowing direct operation from logic drives

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQB17N08L / FQI17N08L	Units
V _{DSS}	Drain-Source Voltage		80	V
I _D	Drain Current - Continuous (T _C = 25°C)	16.5	Α
	- Continuous (T _C = 100°C	C)	11.6	А
I _{DM}	Drain Current - Pulsed	(Note 1)	66	Α
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	100	mJ
I _{AR}	Avalanche Current	(Note 1)	16.5	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	6.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.5	V/ns
P_{D}	Power Dissipation (T _A = 25°C) *		3.75	W
	Power Dissipation (T _C = 25°C)		65	W
	- Derate above 25°C		0.43	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.31	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_{D} = 250 \mu\text{A}$	80			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°	C	0.08		V/°C
I _{DSS}	Zana Cata Valta na Busin Commant	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
	Zero Gate Voltage Drain Current	V _{DS} = 64 V, T _C = 150°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1.0		2.0	V
R _{DS(on)}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			0.076	0.100	
DO(011)	On-Resistance	$V_{GS} = 5 \text{ V}, I_D = 8.25 \text{ A}$		0.090	0.115	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 25 \text{ V}, I_D = 8.25 \text{ A}$ (Note	4)	12.4		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		120 29	155 37	pF pF pF
C _{rss}	Reverse Transfer Capacitance			29	37	pF
Switch	ing Characteristics					
	T 0 D 1 T					
t _{d(on)}	Turn-On Delay Time	V ₂₂ = 40 V I ₂ = 16.5 A		7	25	ns
t _{d(on)}	Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 40 \text{ V}, I_{D} = 16.5 \text{ A},$ $R_{C} = 25 \Omega$		7 290	25 590	ns ns
	•	$R_G = 25 \Omega$				
t _r	Turn-On Rise Time			290	590	ns
$t_{\rm r}$ $t_{\rm d(off)}$	Turn-On Rise Time Turn-Off Delay Time	$R_G = 25 \Omega$		290 20	590 50	ns ns
t _r t _{d(off)} t _f	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G=25~\Omega$ (Note 4	5)	290 20 75	590 50 160	ns ns ns
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_G = 25~\Omega$ (Note 4 $V_{DS} = 64~V,~I_D = 16.5~A,$	5)	290 20 75 8.8	590 50 160 11.5	ns ns ns
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:controller}$ (Note 4) $V_{DS} = 64~V,~I_{D} = 16.5~A,$ $V_{GS} = 5~V \label{eq:controller}$ (Note 4)	5)	290 20 75 8.8 2.0	590 50 160 11.5	ns ns ns nC
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_G = 25~\Omega \label{eq:Note 4}$ (Note 4) $V_{DS} = 64~V,~I_D = 16.5~A,~V_{GS} = 5~V \label{eq:Note 4}$ (Note 4)	5)	290 20 75 8.8 2.0	590 50 160 11.5 	ns ns ns nC nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 64 \text{ V}, I_D = 16.5 \text{ A},$ $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$	5) 5)	290 20 75 8.8 2.0 5.4	590 50 160 11.5	ns ns ns nC
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \\ \textbf{Drain-S} \\ I_{S} \\ \\ I_{SM} \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics at Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 64 \text{ V}, I_D = 16.5 \text{ A}, V_{GS} = 5 \text{ V}$ (Note 4) (Note 4) $V_{CS} = 5 \text{ V}$ (Note 5) $V_{CS} = 5 \text{ V}$ (Note 5) $V_{CS} = 5 \text{ V}$ (Note 6) $V_{CS} = 5 \text{ V}$	5)	290 20 75 8.8 2.0 5.4	590 50 160 11.5 16.5 66	ns ns ns nC nC
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \\ \textbf{Drain-S} \\ \textbf{I}_S \\ \end{array}$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$R_G = 25 \Omega$ (Note 4) $V_{DS} = 64 \text{ V}, I_D = 16.5 \text{ A},$ $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$ (Note 4) $V_{GS} = 5 \text{ V}$	5)	290 20 75 8.8 2.0 5.4	590 50 160 11.5 	ns ns ns nC nC

- $\label{eq:Notes:Notes:1} \begin{tabular}{ll} \textbf{Notes:} \\ \textbf{1. Repetitive Rating: Pulse width limited by maximum junction temperature} \\ \textbf{2. L} = \textbf{0.5mH, } I_{AS} = \textbf{16.5A, } V_{DD} = 25V, R_G = 25 \ \Omega, Starting \ T_J = 25^{\circ}C \\ \textbf{3. } I_{SD} \le \textbf{16.5A, } \text{ didt} \le 300A/\mu\text{s, } V_{DD} \le BV_{DSS,} \ Starting \ T_J = 25^{\circ}C \\ \textbf{4. } \text{ Pulse Test: Pulse width } \le 300\mu\text{s, Duty cycle} \le 2\% \\ \textbf{5. Essentially independent of operating temperature} \\ \end{tabular}$

Typical Characteristics

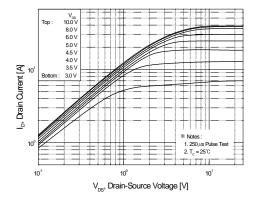


Figure 1. On-Region Characteristics

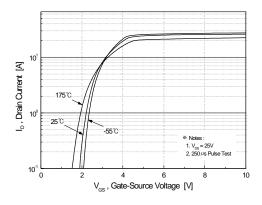


Figure 2. Transfer Characteristics

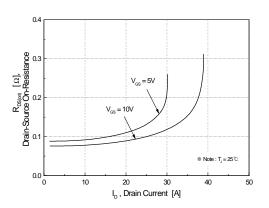


Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

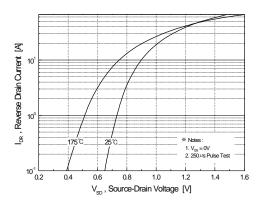


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

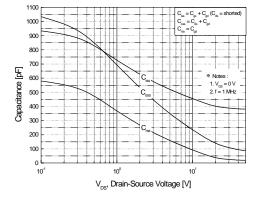


Figure 5. Capacitance Characteristics

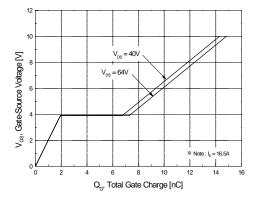
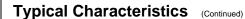
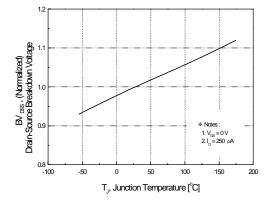




Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A2, December 2000

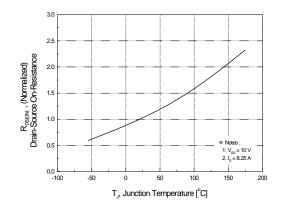
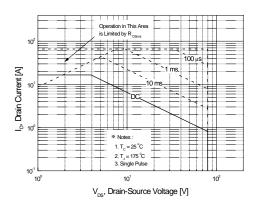



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

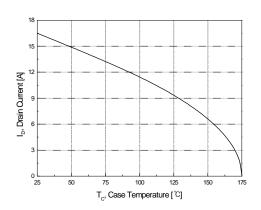
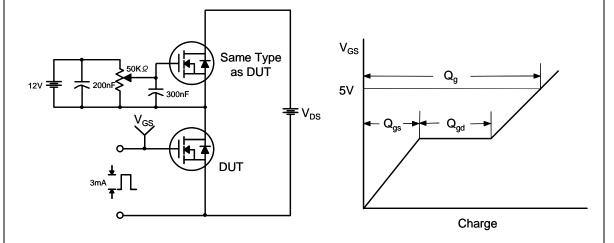
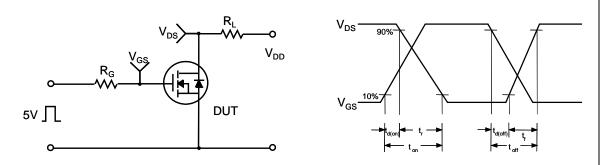


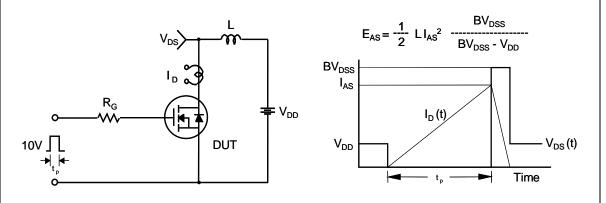
Figure 9. Maximum Safe Operating Area

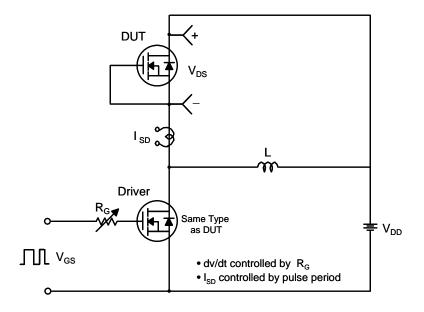
Figure 10. Maximum Drain Current vs. Case Temperature

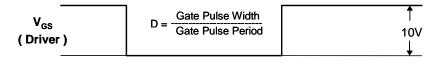



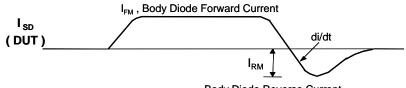

Figure 11. Transient Thermal Response Curve

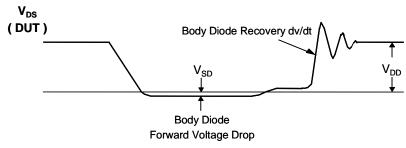
©2000 Fairchild Semiconductor International Rev. A2, December 2000

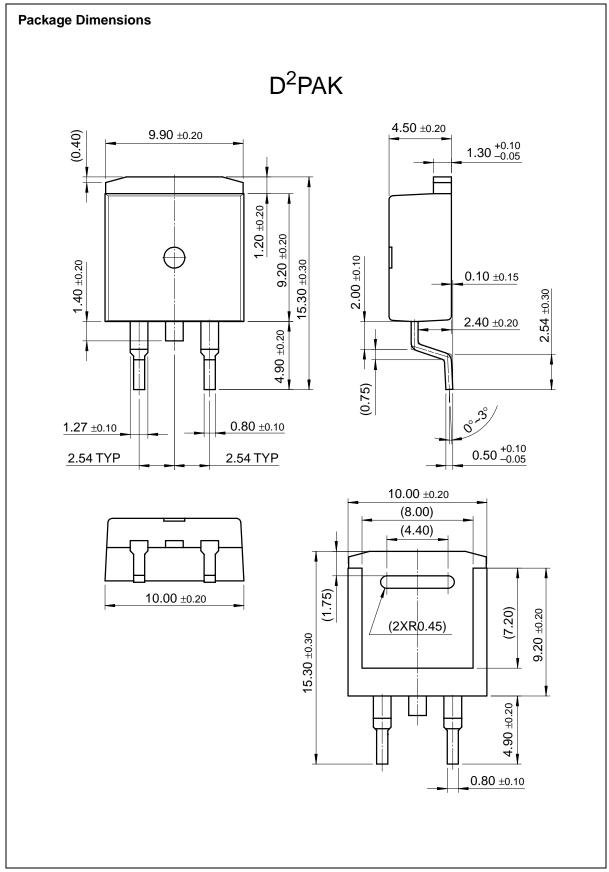

Gate Charge Test Circuit & Waveform

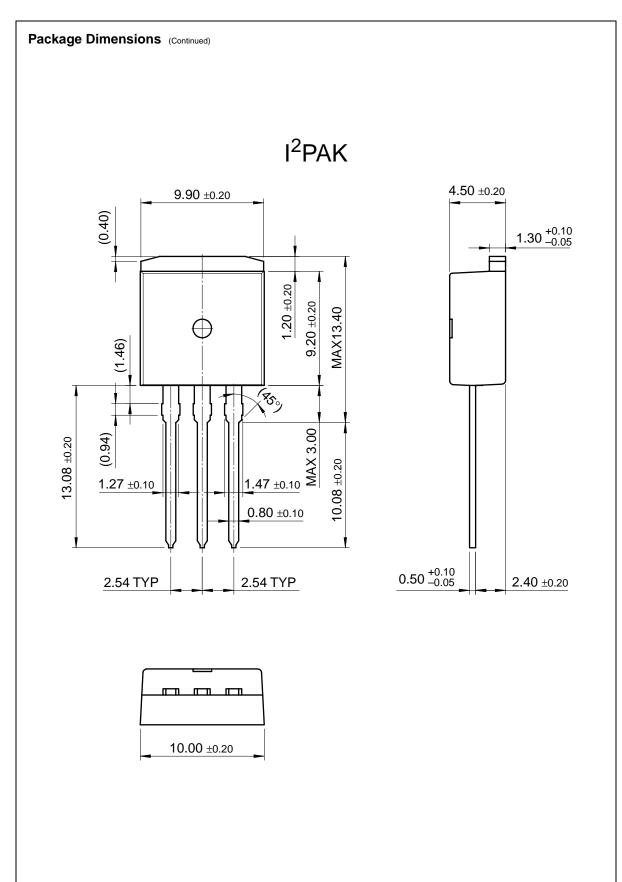

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms





©2000 Fairchild Semiconductor International Rev. A2, December 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] FASTr[™] QFET[™] VCX[™]

Bottomless[™] GlobalOptoisolator[™] QS[™]

CoolFET™ GTO™ QT Optoelectronics™

CROSSVOLT™ HiSeC™ Quiet Series™ DOME™ ISOPLANAR™ SuperSOT™-3 E²CMOS™ MICROWIRE™ SuperSOT™-6 EnSigna™ OPTOLOGIC™ SuperSOT™-8 FACT™ OPTOPLANAR™ SvncFET™ POP^{TM} FACT Quiet Series™ TinyLogic™

FAST[®] PowerTrench[®] UHC[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. F1

back to top

Features

- 16.5A, 80V, $R_{DS(on)} = 0.1\Omega$ @ $V_{GS} = 10V$
- Low gate charge (typical 8.8nC)
- Low Crss (typical 29pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- Low level gate drive requirments allowing direct operation from logic drives

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQI17N08LTU	Full Production	\$0.54	TO-262(I2PAK)	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

Features

- 16.5A, 80V, $R_{DS(on)} = 0.1\Omega$ @ $V_{GS} = 10V$
- Low gate charge (typical 8.8nC)
- Low Crss (typical 29pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- Low level gate drive requirments allowing direct operation from logic drives

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB17N08LTM	Full Production	\$0.54	TO-263(D2PAK)	2	TAPE REEL

^{* 1,000} piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-263(D2PAK)-2	Electrical	-55°C to 175°C	9.2	Oct 5, 2001

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor