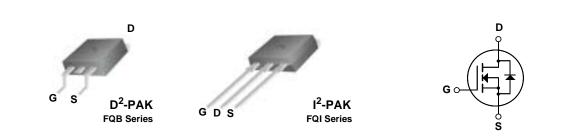


FQB8N25 / FQI8N25

250V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

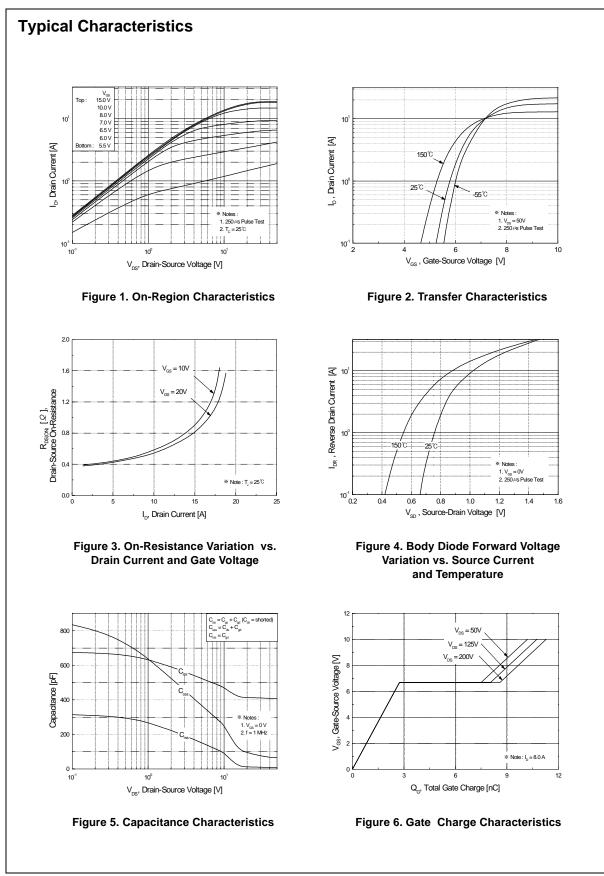
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply.

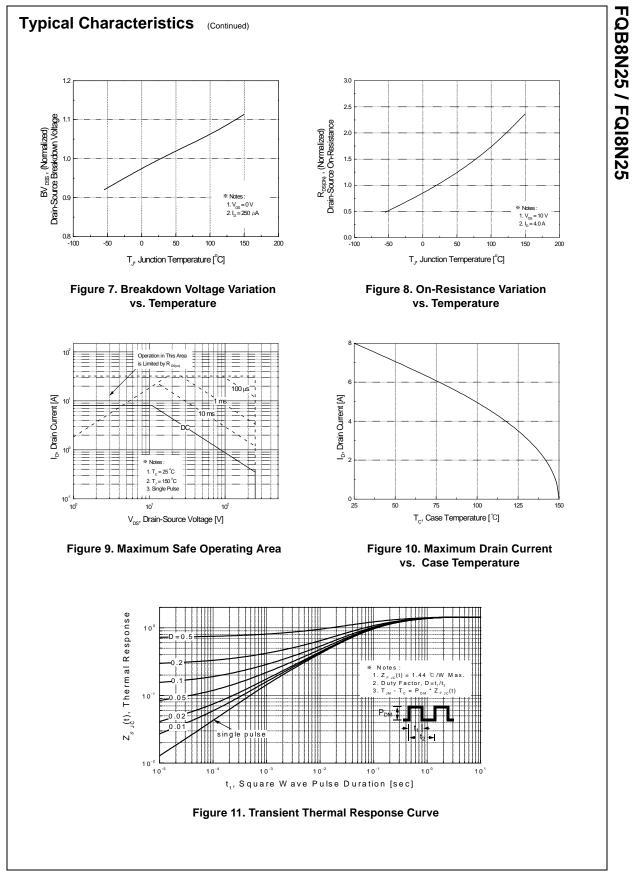
Features

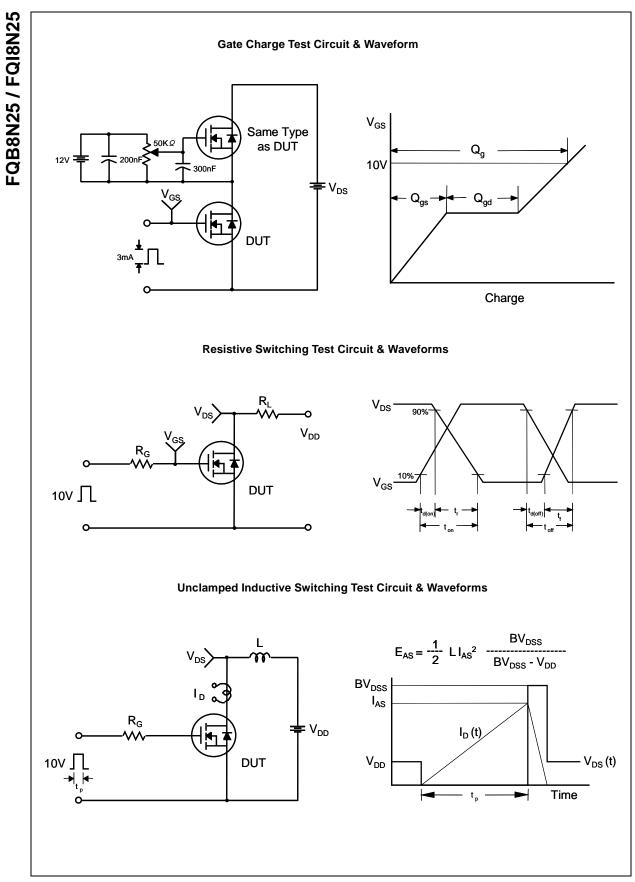
- 8.0A, 250V, R_{DS(on)} = 0.55Ω @V_{GS} = 10 V
- Low gate charge (typical 12 nC)
- Low Crss (typical 11 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

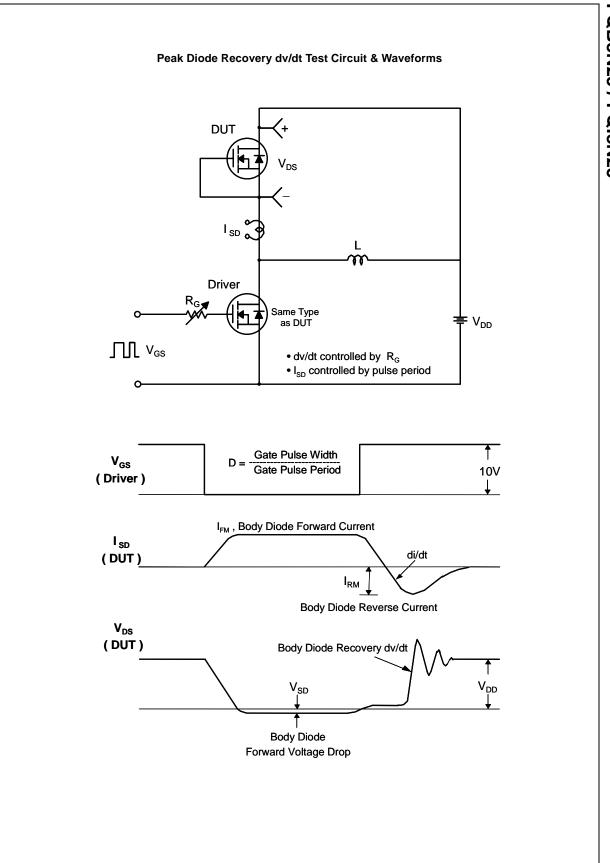
Symbol	Parameter		FQB8N25 / FQI8N25	Units	
V _{DSS}	Drain-Source Voltage		250	V	
I _D	Drain Current - Continuous ($T_C = 25^\circ$	(O°	8.0	А	
	- Continuous (T _C = 100	D°C)	5.0	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	32	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	120	mJ	
I _{AR}	Avalanche Current	(Note 1)	8.0	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	8.7	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns	
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W	
	Power Dissipation $(T_C = 25^{\circ}C)$		87	W	
	- Derate above 25°C		0.69	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

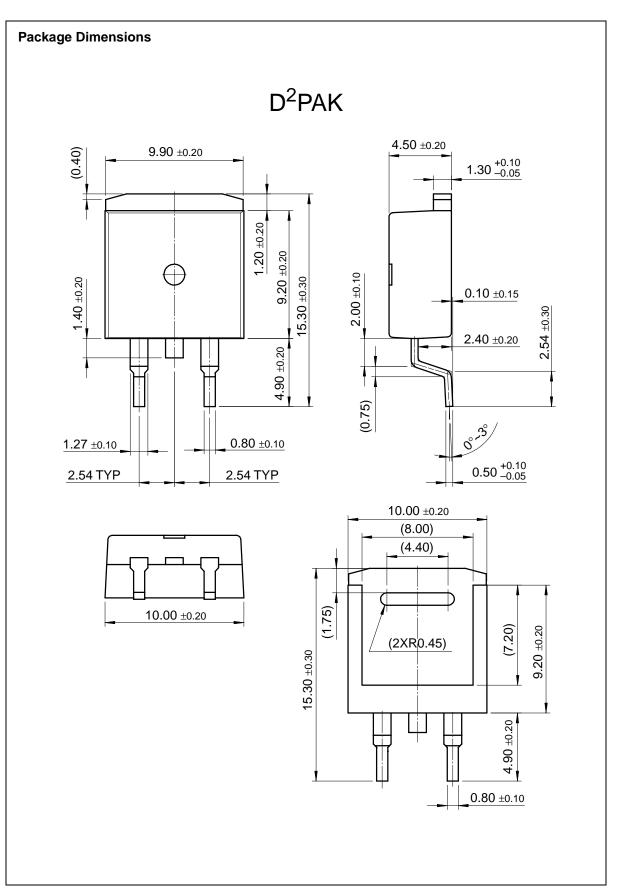

Thermal Characteristics

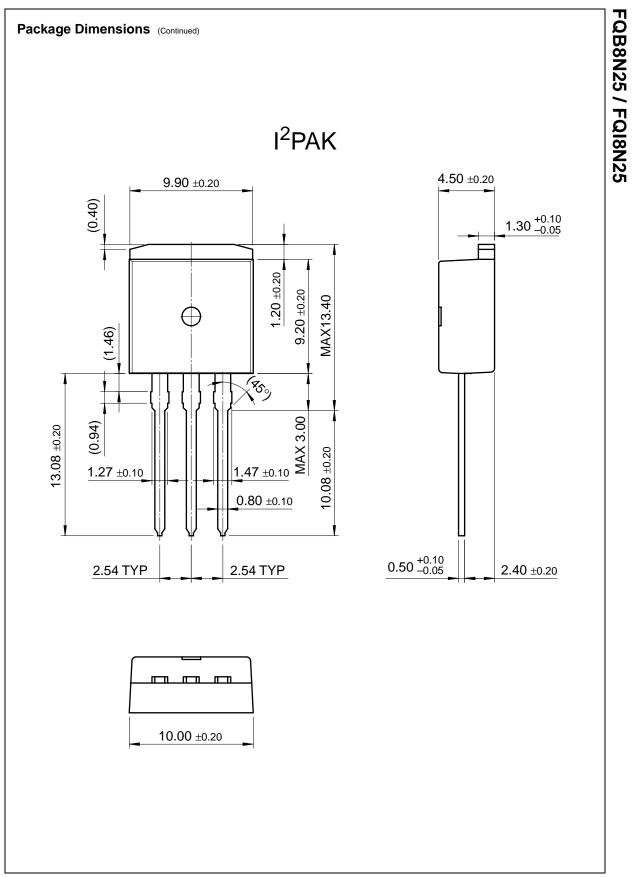

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.44	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W
* When mount	ed on the minimum pad size recommended (PCB Mount)	•	·	


May 2000

racteristicsDrain-Source Breakdown VoltageBreakdown Voltage Temperature CoefficientZero Gate Voltage Drain CurrentGate-Body Leakage Current, Forward Gate-Body Leakage Current, Reverse	$V_{GS} = 0 V, I_D = 250 \mu A$ $I_D = 250 \mu A, Referenced to 25°$ $V_{DS} = 250 V, V_{GS} = 0 V$ $V_{DS} = 200 V, T_C = 125°C$	250 C	0.24		
Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	$I_D = 250 \ \mu$ A, Referenced to 25° $V_{DS} = 250 \ V, V_{GS} = 0 \ V$ $V_{DS} = 200 \ V, T_C = 125^{\circ}C$	C			
Coefficient Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward	$I_D = 250 \ \mu$ A, Referenced to 25° $V_{DS} = 250 \ V, V_{GS} = 0 \ V$ $V_{DS} = 200 \ V, T_C = 125^{\circ}C$		0.24		V
Gate-Body Leakage Current, Forward	V _{DS} = 200 V, T _C = 125°C				V/°C
Gate-Body Leakage Current, Forward				1	μA
				10	μΑ
Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
acteristics					
	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3.0		5.0	V
•					
On-Resistance	v _{GS} = 10 V, I _D = 4.0 A		0.42	0.55	Ω
Forward Transconductance	$V_{DS} = 50 \text{ V}, I_D = 4.0 \text{ A}$ (Note	4)	6.6		S
			1	1	
	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		410	530	pF
Output Capacitance	f = 1.0 MHz		85	110	pF
Reverse Transfer Capacitance			11	15	pF
Turn-On Delay Time	V _{DD} = 125 V, I _D = 8.0 A,		10	30	ns
	$R_{G} = 25 \Omega$				ns
	(Note 4	5)			ns
Turn-Off Fall Time	(14010 4			95	ns
			42	00	
Total Gate Charge	V _{DS} = 200 V, I _D = 8.0 A,		42 12	15	nC
Total Gate Charge Gate-Source Charge	V _{DS} = 200 V, I _D = 8.0 A, V _{GS} = 10 V				nC nC
•			12	15	-
Gate-Source Charge Gate-Drain Charge	V _{GS} = 10 V (Note 4		12 2.7	15 	nC
Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar	V _{GS} = 10 V (Note 4 nd Maximum Ratings		12 2.7	15 	nC nC
Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Dio	V _{GS} = 10 V (Note 4 Ind Maximum Ratings de Forward Current		12 2.7	15 	nC
Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Dio Maximum Pulsed Drain-Source Diode F	V _{GS} = 10 V (Note 4 Id Maximum Ratings de Forward Current orward Current	.5)	12 2.7 5.9	15 	nC nC A A
Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Dio	$V_{GS} = 10 \text{ V} $ (Note 4 ad Maximum Ratings de Forward Current orward Current $V_{GS} = 0 \text{ V}, I_S = 8.0 \text{ A}$	5)	12 2.7 5.9	15 8.0	nC nC A
Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Dio Maximum Pulsed Drain-Source Diode F	V _{GS} = 10 V (Note 4 Id Maximum Ratings de Forward Current orward Current	 5) 	12 2.7 5.9 	15 8.0 32	nC nC A A
	Forward Transconductance	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 4.0 \text{ A}$ (NoteForward Transconductance $V_{DS} = 50 \text{ V}, I_D = 4.0 \text{ A}$ (NoteCharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = 4.0 \text{ A}$ Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ MHz}$ Reverse Transfer Capacitance $f = 1.0 \text{ MHz}$ g Characteristics $V_{DD} = 125 \text{ V}, I_D = 8.0 \text{ A}, R_G = 25 \Omega$ Turn-On Rise Time $V_{DD} = 125 \text{ V}, I_D = 8.0 \text{ A}, R_G = 25 \Omega$	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, \text{ I}_D = 4.0 \text{ A}$ Forward Transconductance $V_{DS} = 50 \text{ V}, \text{ I}_D = 4.0 \text{ A}$ (Note 4)Forward Transconductance $V_{DS} = 50 \text{ V}, \text{ I}_D = 4.0 \text{ A}$ (Note 4)CharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHzQutput Capacitance $r = 1.0 \text{ MHz}$ Reverse Transfer Capacitance g Characteristics Turn-On Delay Time $V_{DD} = 125 \text{ V}, \text{ I}_D = 8.0 \text{ A},$ $R_G = 25 \Omega$ Turn-Off Delay TimeTurn-Off Delay Time	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ 0.42Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 4.0 \text{ A}$ (Note 4)6.6CharacteristicsInput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz410Output Capacitance $r = 1.0 \text{ MHz}$ 85Reverse Transfer Capacitance11g CharacteristicsTurn-On Delay Time $V_{DD} = 125 \text{ V}, I_D = 8.0 \text{ A},$ $R_G = 25 \Omega$ 10Turn-Off Delay Time11	Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$ 0.42 0.55 Forward Transconductance $V_{DS} = 50 \text{ V}, I_D = 4.0 \text{ A}$ (Note 4) 6.6 Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 410 530 Output Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 85 110 Reverse Transfer Capacitance $V_{DD} = 125 \text{ V}, I_D = 8.0 \text{ A}, R_G = 25 \Omega$ 10 30 Turn-On Delay Time $V_{DD} = 125 \text{ V}, I_D = 8.0 \text{ A}, R_G = 25 \Omega$ 10 30


FQB8N25 / FQI8N25





©2000 Fairchild Semiconductor International

FQB8N25 / FQI8N25

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] Bottomless [™] CoolFET [™] CROSSVOLT [™] DOME [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™]	FASTr [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] ISOPLANAR [™] MICROWIRE [™] OPTOLOGIC [™] OPTOPLANAR [™] POP [™] PowerTrench [®]	QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™]	VCX™
FAST®	PowerTrench®	UHC™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor			etric Cross Reference
find products	Home >> Find products >> FQB8N25	snace Produc	ct Folders and Applica
Products groups Analog and Mixed Signal Discrete	Contents General description Features Product	Datasheet Download this	Request samples Dotted line How to order products
Interface Logic Microcontrollers Non-Volatile	<u>General description</u> <u>Features</u> <u>Product</u> status/pricing/packaging	datasheet PDF	Product Change Notices (PCNs)
<u>Memory</u> <u>Optoelectronics</u> <u>Markets and</u>	General description These N-Channel enhancement mode power	<u>e-mail this datasheet</u> [E-	Support Dotted line Distributor and field sales representatives
applications New products Product selection and parametric search	field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially	This page <u>Print version</u>	Dotted line Quality and reliability Dotted line Design tools
Cross-reference search	tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well		
technical information buy products	suited for high efficiency switching DC/DC converters, switch mode power supply.	-	
technical support my Fairchild	back to top		

Features

company

- 8.0A, 250V, $R_{DS(on)} = 0.55\Omega @V_{GS} = 10 V$
- Low gate charge (typical 12 nC)
- Low Crss (typical 11 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB8N25TM	Full Production	\$0.63	TO-263(D2PAK)	2	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor