

FQB10N20L / FQI10N20L

200V LOGIC N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation modes. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, and motor control.

Features

- 10A, 200V, $R_{DS(on)} = 0.36\Omega @V_{GS} = 10 \text{ V}$
- Low gate charge (typical 13 nC)
- Low Crss (typical 14 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability
- Low level gate drive requirement allowing direct operation from logic drivers

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQB10N20L / FQI10N20L	Units	
V _{DSS}	Drain-Source Voltage		200	V	
I _D	Drain Current - Continuous (T _C = 25	°C)	10	Α	
	- Continuous (T _C = 10	0°C)	6.3	Α	
I_{DM}	Drain Current - Pulsed	(Note 1)	40	Α	
V_{GSS}	Gate-Source Voltage		± 20	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	180	mJ	
I _{AR}	Avalanche Current	(Note 1)	10	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	8.7	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns	
P _D	Power Dissipation (T _A = 25°C) *		3.13	W	
	Power Dissipation (T _C = 25°C)		87	W	
	- Derate above 25°C		0.7	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.44	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C		0.18		V/°C
I _{DSS}	Zero Osto Valta va Basis Osmani	V _{DS} = 200 V, V _{GS} = 0 V			1	μΑ
	Zero Gate Voltage Drain Current	V _{DS} = 160 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1.0		2.0	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 5.0 A		0.29	0.36	0
- (- /	On-Resistance	$V_{GS} = 5 \text{ V}, I_D = 5.0 \text{ A}$ (Note 4)		0.3	0.38	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 30 \text{ V}, I_{D} = 5.0 \text{ A}$		10.7		S
C _{iss}	ic Characteristics Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		640	830	pF
0						
	Output Capacitance	f = 1.0 MHz		95	125	pF
	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		95 14	125 18	pF pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		14	18	pF
Switch	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = 100 V, I _D = 10 A,		14	18 35	pF
Switch t _{d(on)}	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 100 \text{ V}, I_{D} = 10 \text{ A},$ $R_{G} = 25 \Omega$		14 13 150	35 310	pF ns ns
C_{rss} Switching to the second s	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	V _{DD} = 100 V, I _D = 10 A,		14 13 150 50	35 310 110	ns ns ns
	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$V_{DD} = 100 \text{ V}, I_{D} = 10 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5)	 	14 13 150 50 95	35 310 110 200	ns ns ns
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 100 \text{ V}, I_D = 10 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 10 \text{ A},$	 	13 150 50 95 13	35 310 110 200 17	ns ns ns ns nc
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 100 \text{ V}, I_{D} = 10 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5)		14 13 150 50 95 13 2.4	35 310 110 200 17	ns ns ns nc nC
Switch t _{d(on)} t _r t _{d(off)} t _f	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 100 \text{ V}, I_D = 10 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 10 \text{ A},$	 	13 150 50 95 13	35 310 110 200 17	ns ns ns ns
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 100 \text{ V}, I_D = 10 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 10 \text{ A},$ $V_{GS} = 5 \text{ V}$ (Note 4, 5)		14 13 150 50 95 13 2.4	35 310 110 200 17	ns ns ns nc nC
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 100 \text{ V}, I_{D} = 10 \text{ A},$ $R_{G} = 25 \Omega \qquad \qquad \text{(Note 4, 5)}$ $V_{DS} = 160 \text{ V}, I_{D} = 10 \text{ A},$ $V_{GS} = 5 \text{ V} \qquad \qquad \text{(Note 4, 5)}$ and Maximum Ratings		14 13 150 50 95 13 2.4	35 310 110 200 17	ns ns ns nc nC
	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar	V_{DD} = 100 V, I_D = 10 A, R_G = 25 Ω (Note 4, 5) V_{DS} = 160 V, I_D = 10 A, V_{GS} = 5 V (Note 4, 5)		14 13 150 50 95 13 2.4 6.1	35 310 110 200 17 	ns ns ns ns nC nC
$\begin{array}{c} \textbf{C}_{rss} \\ \textbf{Switch} \\ \textbf{t}_{d(on)} \\ \textbf{t}_{r} \\ \textbf{t}_{d(off)} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \\ \\ \textbf{Drain-S} \\ \textbf{I}_{SM} \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	V_{DD} = 100 V, I_D = 10 A, R_G = 25 Ω (Note 4, 5) V_{DS} = 160 V, I_D = 10 A, V_{GS} = 5 V (Note 4, 5)		14 13 150 50 95 13 2.4 6.1	35 310 110 200 17 	ns ns ns nc nC
$\begin{array}{c} \textbf{Switchi} \\ \textbf{Switchi} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \\ \textbf{Drain-S} \\ \textbf{I}_S \\ \end{array}$	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$V_{DD} = 100 \text{ V}, I_D = 10 \text{ A},$ $R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 10 \text{ A},$ $V_{GS} = 5 \text{ V}$ (Note 4, 5) and Maximum Ratings ode Forward Current		13 150 50 95 13 2.4 6.1	35 310 110 200 17 	ns ns ns nc nC

- $\label{eq:Notes:Notes:1} \begin{tabular}{ll} \textbf{Notes:} \\ \textbf{1. Repetitive Rating: Pulse width limited by maximum junction temperature} \\ \textbf{2. L} = 2.7\text{mH, } |_{AS} = 10\text{A, } V_{DD} = 50\text{V}, R_{G} = 25\ \Omega, Starting } T_{J} = 25^{\circ}\text{C} \\ \textbf{3. } |_{SD} \le 10\text{A, } \text{di/dt} \le 300\text{A/}\mu\text{s, } V_{DD} \le B\text{V}_{DSS}, Starting } T_{J} = 25^{\circ}\text{C} \\ \textbf{4. } \text{Pulse Test: Pulse width} \le 300\mu\text{s, Duty cycle} \le 2\% \\ \textbf{5. Essentially independent of operating temperature} \\ \end{tabular}$

Typical Characteristics

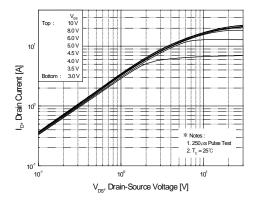


Figure 1. On-Region Characteristics

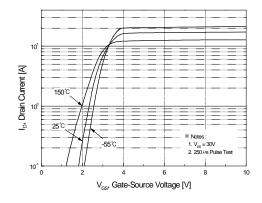


Figure 2. Transfer Characteristics

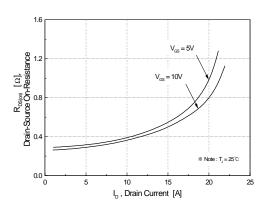


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

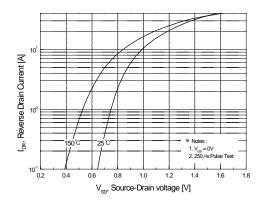


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

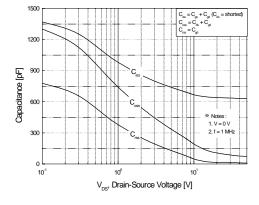


Figure 5. Capacitance Characteristics

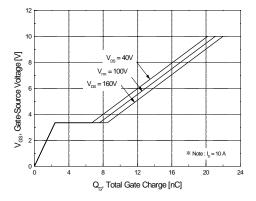


Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A2, December 2000

Typical Characteristics (Continued)

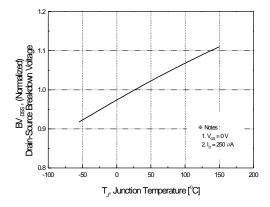
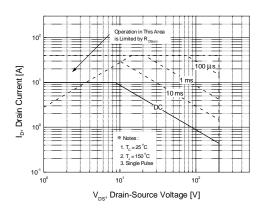



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

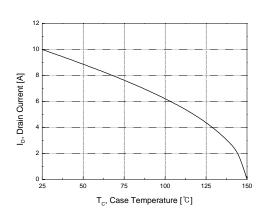
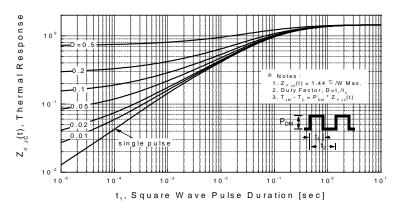
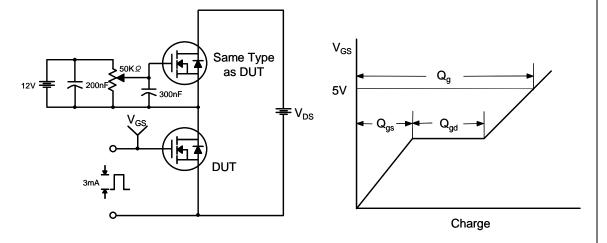
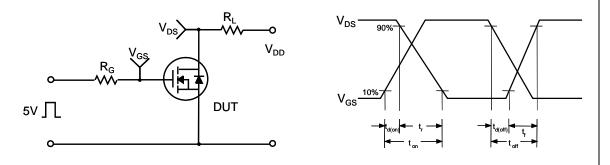


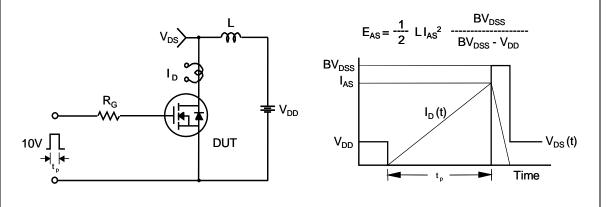
Figure 9. Maximum Safe Operating Area

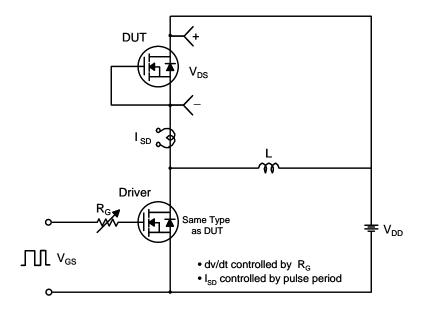
Figure 10. Maximum Drain Current vs. Case Temperature

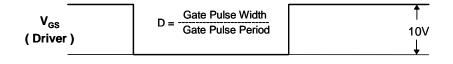



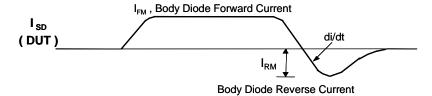

Figure 11. Transient Thermal Response Curve

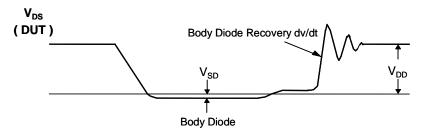
©2000 Fairchild Semiconductor International Rev. A2, December 2000


Gate Charge Test Circuit & Waveform

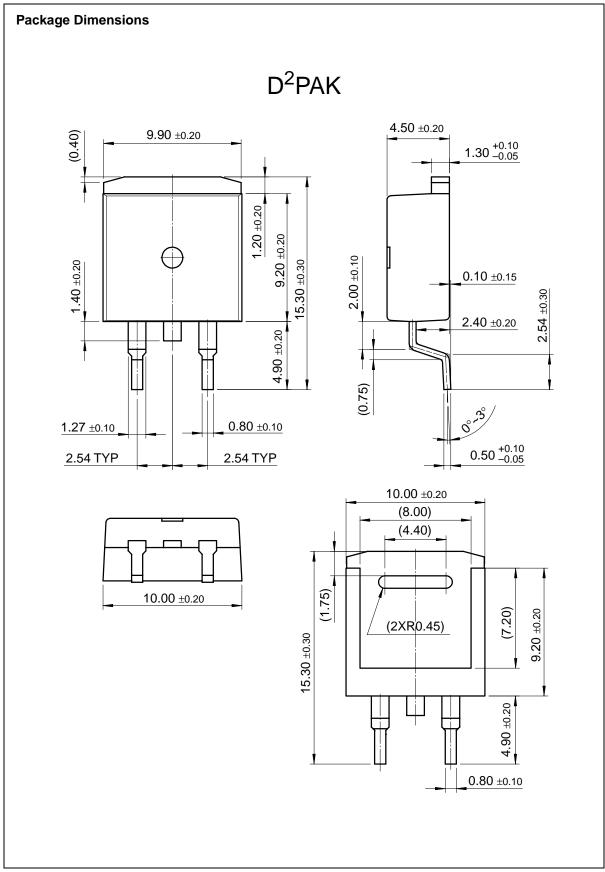

Resistive Switching Test Circuit & Waveforms

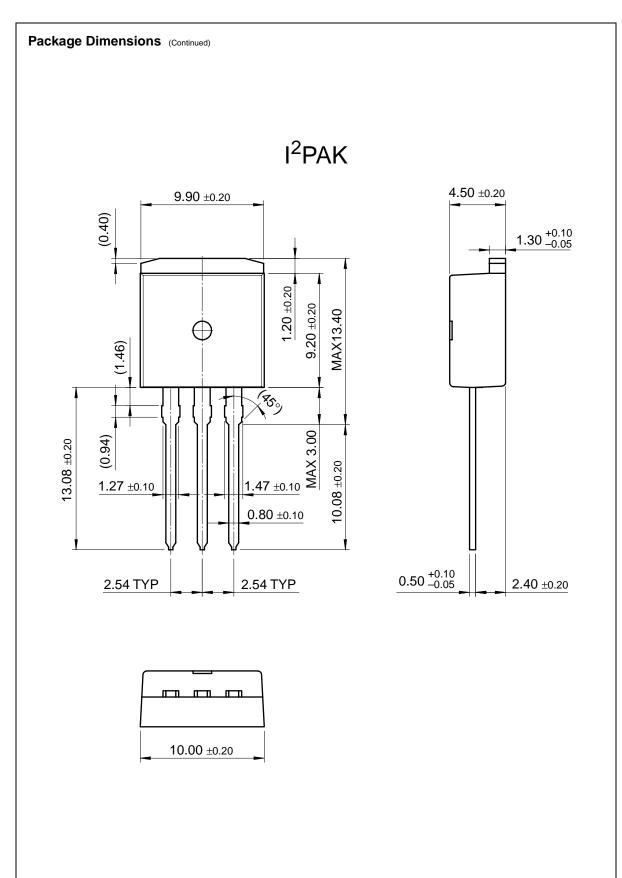



Unclamped Inductive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms





Forward Voltage Drop

©2000 Fairchild Semiconductor International Rev. A2, December 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx $^{\text{TM}}$ HiSeC $^{\text{TM}}$ Bottomless $^{\text{TM}}$ ISOPLANAR $^{\text{TM}}$ CoolFET $^{\text{TM}}$ MICROWIRE $^{\text{TM}}$ CROSSVOLT $^{\text{TM}}$ POP $^{\text{TM}}$ E 2 CMOS $^{\text{TM}}$ PowerTrench $^{\text{®}}$

FACT™ QFET™ FACT Quiet Series™ QS™

FAST® Quiet Series $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3 SuperSOT $^{\text{TM}}$ -6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

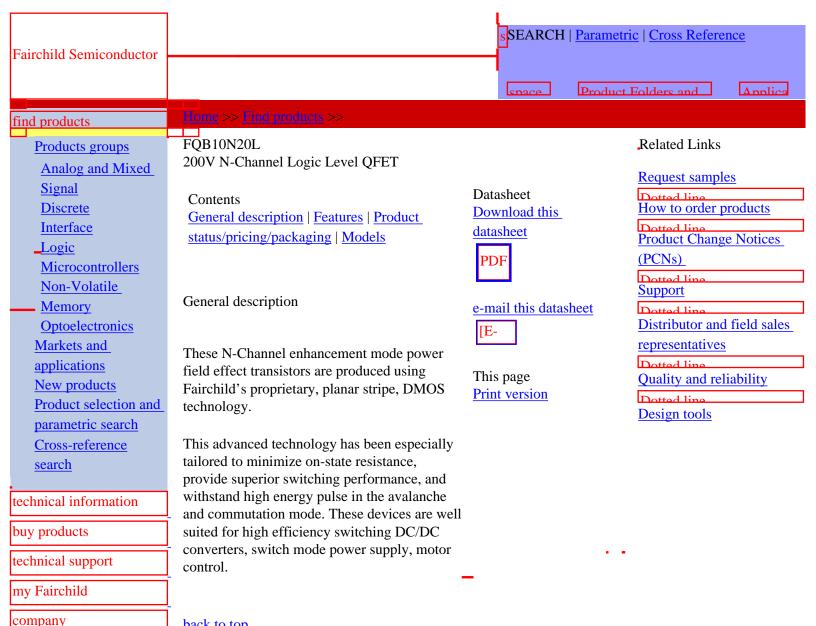
result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperSOT™-8 SvncFET™

TinyLogic™

UHC™


 VCX^{TM}

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000

back to top

Features

- 10A, 200V, $R_{DS(on)} = 0.36\Omega$ @ $V_{GS} = 10 \text{ V}$
- Low gate charge (typical 13nC)
- Low Crss (typical 14pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Low level gate drive requirement allowing direct operation from logic drivers

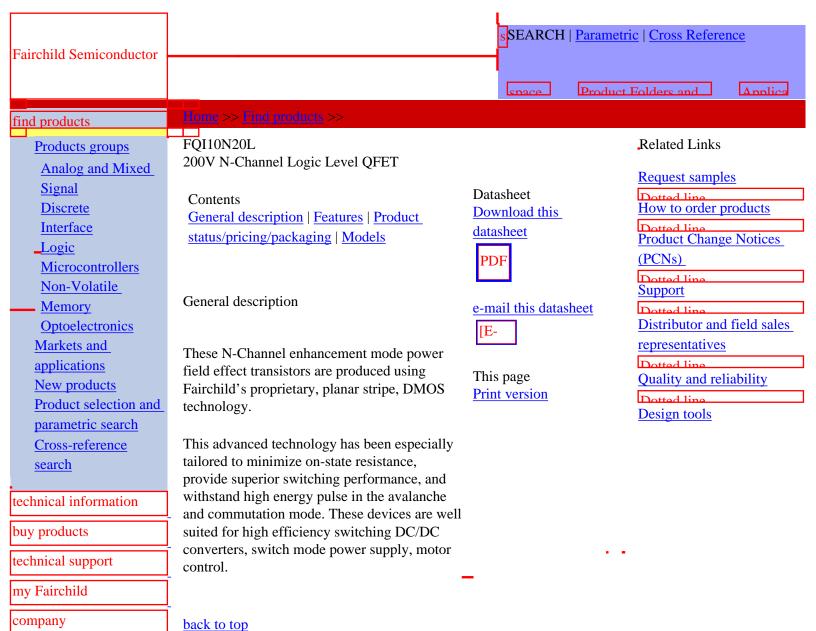
back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQB10N20LTM	Full Production	\$0.62	TO-263(D2PAK)	2	TAPE REEL

^{* 1,000} piece Budgetary Pricing

back to top


Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-263(D2PAK)-2	Electrical/Thermal	-55°C to 150°C	9.2	Jul 21, 2000

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor

Features

- 10A, 200V, $R_{DS(on)} = 0.36\Omega$ @ $V_{GS} = 10 \text{ V}$
- Low gate charge (typical 13nC)
- Low Crss (typical 14pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- Low level gate drive requirement allowing direct operation from logic drivers

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQI10N20LTU	Full Production	\$0.62	TO-262(I2PAK)	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top

Models

Package & leads Condition		Temperature range Software version		Revision date	
PSPICE					
TO-262(I2PAK)-3	Electrical/Thermal	-55°C to 150°C	9	Jul 21, 2000	

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor