

Rochester Electronics Manufactured Components

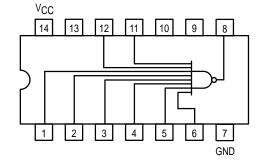
Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

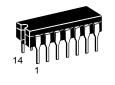
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.


The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.



8-INPUT NAND GATE



J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

SN54LSXXJ SN74LSXXN SN74LSXXD Ceramic Plastic SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ІОН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS30

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input I OW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
	Input LOW Voltage	74			0.8]			
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
V	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH}	H = MAX, VIN = VIH	
VOH		74	2.7	3.5		V	or V _{IL} per Truth	Table	
Val	Output LOW Voltage	54, 74		0.25	0.4	V		$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Input HIGH Current				20	μΑ	$V_{CC} = MAX$, $V_{IN} = 2.7 V$		
ΊΗ					0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX		
lcc	Power Supply Current Total, Output HIGH Total, Output LOW				0.5	mA	V _{CC} = MAX		
					1.1				

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tPLH	Turn-Off Delay, Input to Output		8.0	15	ns	V _{CC} = 5.0 V
tPHL	Turn-On Delay, Input to Output		13	20	ns	C _L = 15 pF