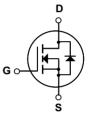


April 2000

FQB46N15 / FQI46N15

150V N-Channel MOSFET

General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifire, high efficiency switching for DC/DC converters, and DC motor control, uninterrupted power supply.

Features

- 45.6A, 150V, $R_{DS(on)}$ = 0.042 Ω @V_{GS} = 10 V Low gate charge (typical 85 nC)
- Low Crss (typical 100 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- 175°C maximum junction temperature rating

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQB46N15 / FQI46N15	Units	
V _{DSS}	Drain-Source Voltage		150	V	
I _D	Drain Current - Continuous (T _C = 25°C)		45.6	Α	
	- Continuous (T _C = 100°C))	32.2	Α	
I _{DM}	Drain Current - Pulsed	(Note 1)	182.4	Α	
V _{GSS}	Gate-Source Voltage		± 25	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	650	mJ	
I _{AR}	Avalanche Current	(Note 1)	45.6	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	21	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns	
P _D	Power Dissipation (T _A = 25°C) *		3.75	W	
	Power Dissipation (T _C = 25°C)		210	W	
	- Derate above 25°C		1.43	W/°C	
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
TL	Maximum lead temperature for soldering purposes,		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.7	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

^{*} When mounted on the minimum pad size recommended (PCB Mount)

	Test Conditions	Min	Тур	Max	Units
acteristics					
Orain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 250 \mu\text{A}$	150			V
Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.16		V/°C
Doenicient	Vpo = 150 V Voo = 0 V			1	μА
Zero Gate Voltage Drain Current					μΑ
Rate-Body Leakage Current Forward					nΑ
					nA
	. 20		I		
acteristics					
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 22.8 A		0.033	0.042	Ω
Forward Transconductance	V _{DS} = 40 V, I _D = 22.8 A (Note 4)		33		S
Output Capacitance	f = 1.0 MHz		520 100	670 130	pF nF
Reverse Transfer Capacitance	1 - 1.0 MHZ		100	130	pF
n Characteristics					
<u>-</u>			35	80	ns
<u> </u>					ns
Furn-Off Delay Time	$R_G = 25 \Omega$		210	430	
	(1)-1- 4 5)				ns
Turn-Off Fall Time	(Note 4, 5)		200	410	ns ns
·	, , ,		200 85	410 110	
Furn-Off Fall Time	V _{DS} = 120 V, I _D = 45.6 A, V _{GS} = 10 V				ns
	Cate-Body Leakage Current, Forward Cate-Body Leakage Current, Reverse Cateristics Cate Threshold Voltage Con-Resistance Conward Transconductance Characteristics Conput Capacitance Cutput Capacitance	$V_{DS} = 120 \text{ V}, V_{C} = 150 ^{\circ}\text{C}$ Sate-Body Leakage Current, Forward $V_{GS} = 25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Forward $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate-Body Leakage Current, Reverse $V_{DS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ Sate	ero Gate Voltage Drain Current $V_{DS} = 120 \text{ V}, T_{C} = 150^{\circ}\text{C}$	ero Gate Voltage Drain Current $V_{DS} = 120 \text{ V}, T_{C} = 150^{\circ}\text{C} \qquad$	rero Gate Voltage Drain Current $V_{DS} = 120 \text{ V}, T_{C} = 150^{\circ}\text{C}$ 10 Gate-Body Leakage Current, Forward $V_{GS} = 25 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$

- $\label{eq:Notes:1} \begin{tabular}{ll} \textbf{Notes:} \\ 1. & \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature} \\ 2. & \textbf{L} = 0.52\text{mH, } \textbf{I}_{AS} = 45.6\text{A, } \textbf{V}_{DD} = 25\text{V, } \textbf{R}_{G} = 25~\Omega, \textbf{Starting } \textbf{T}_{J} = 25^{\circ}\textbf{C} \\ 3. & \textbf{I}_{SD} \leq 45.6\text{A, } \textbf{di/dt} \leq 3004\mu\text{s, } \textbf{V}_{DD} \leq 8\textbf{V}_{DSS}, \textbf{Starting } \textbf{T}_{J} = 25^{\circ}\textbf{C} \\ 4. & \textbf{Pulse Test: Pulse width} \leq 300\mu\text{s, } \textbf{Duty cycle} \leq 2\% \\ 5. & \textbf{Essentially independent of operating temperature} \end{tabular}$

Typical Characteristics

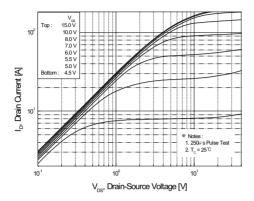


Figure 1. On-Region Characteristics

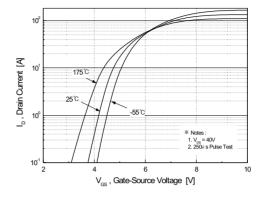


Figure 2. Transfer Characteristics

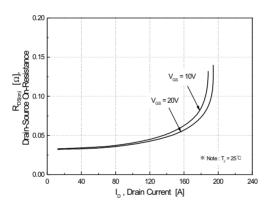


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

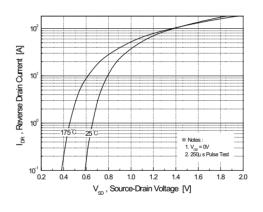


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

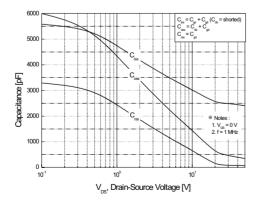


Figure 5. Capacitance Characteristics

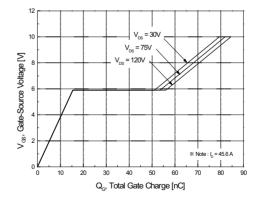
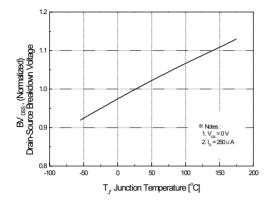



Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

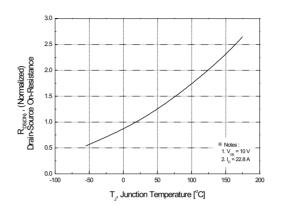
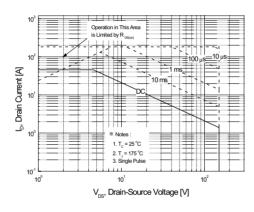



Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

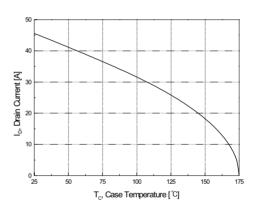


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

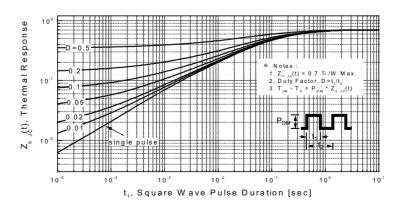
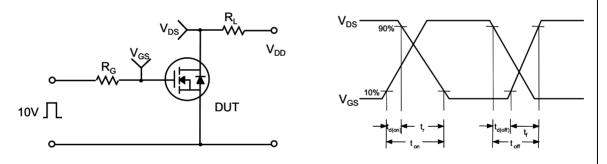
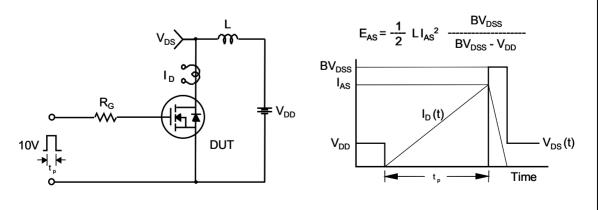
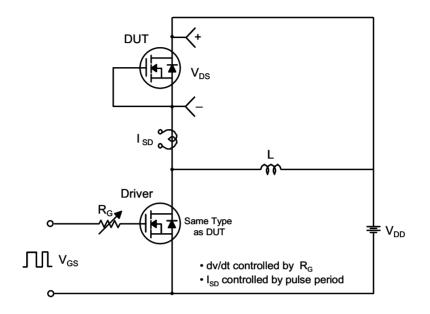
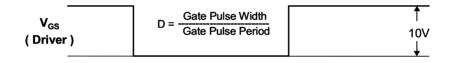
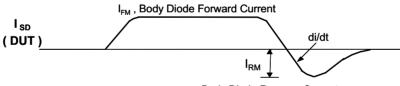



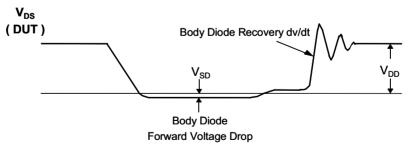
Figure 11. Transient Thermal Response Curve

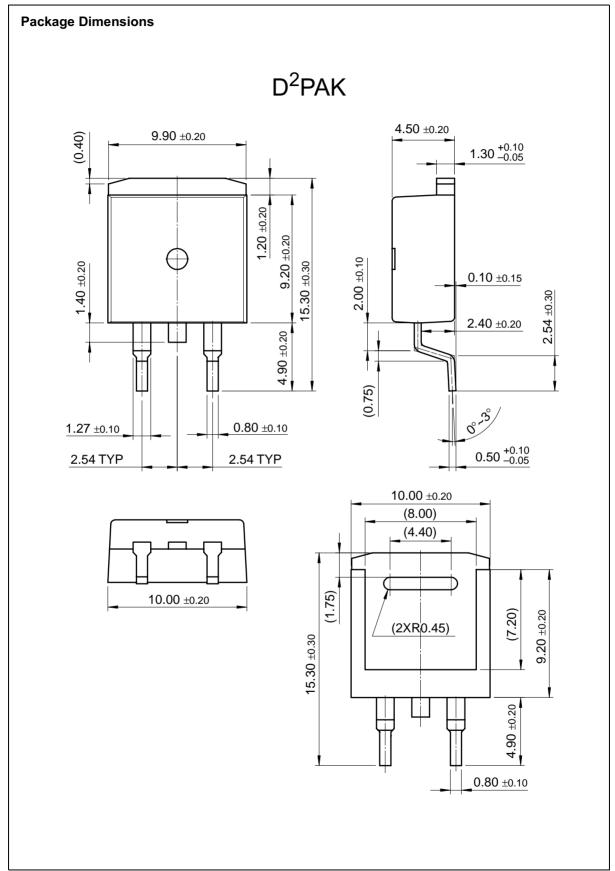

Gate Charge Test Circuit & Waveform

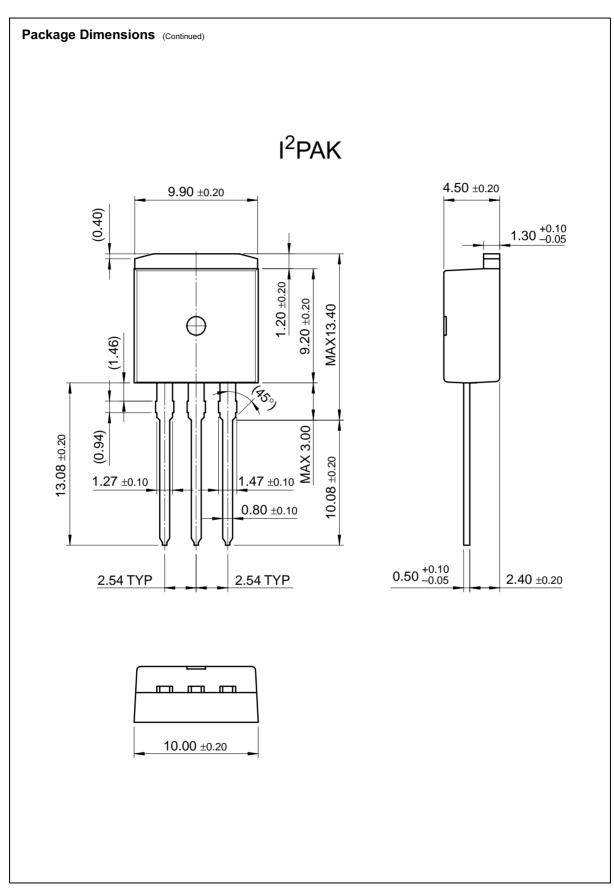

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms





Body Diode Reverse Current

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	ISOPLANAR™	SyncFET™
CoolFET™	MICROWIRE™	TinyLogic™
CROSSVOLT™	POP™	UHC™
E ² CMOS™	PowerTrench™	VCX™

FACT™ QFET™ FACT Quiet Series™ QS™

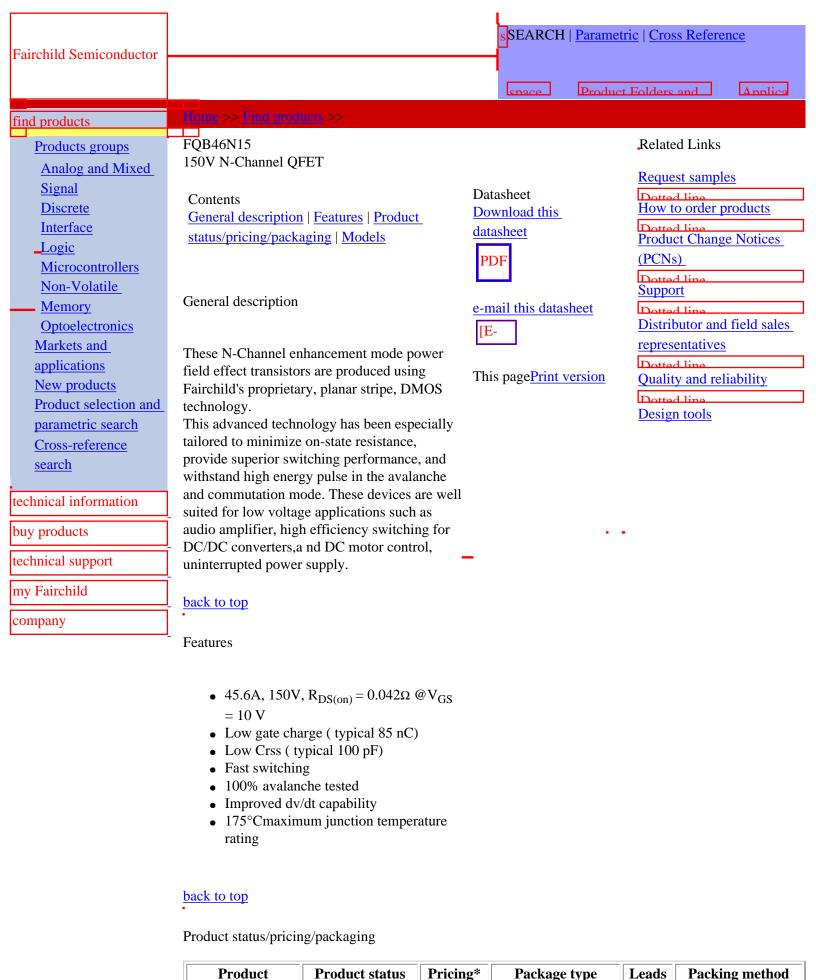
 $\begin{array}{lll} \mathsf{FAST}^{\circledR} & \mathsf{Quiet} \; \mathsf{Series}^{\intercal \mathsf{M}} \\ \mathsf{FASTr}^{\intercal \mathsf{M}} & \mathsf{SuperSOT}^{\intercal \mathsf{M}}\text{-}3 \\ \mathsf{GTO}^{\intercal \mathsf{M}} & \mathsf{SuperSOT}^{\intercal \mathsf{M}}\text{-}6 \\ \mathsf{HiSeC}^{\intercal \mathsf{M}} & \mathsf{SuperSOT}^{\intercal \mathsf{M}}\text{-}8 \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.


As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

FQB46N15TM	Full Production	\$1.59	TO-263(D2PAK)	2	TAPE REEL

^{* 1,000} piece Budgetary Pricing

back to top

Models

Package & leads Condition		Temperature range	Software version	Revision date	
PSPICE					
TO-263(D2PAK)-2	Electrical	25°C	9.2	May 2, 2002	

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor