October 2006 FRFET $^{\text {TM }}$

FQB9N50CF
 500V N-Channel MOSFET

Features

- $9 \mathrm{~A}, 500 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\text { on })}=0.85 \Omega @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
- Low gate charge (typical 28nC)
- Low Crss (typical 24pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, electronic lamp ballasts based on half bridge topology.

Absolute Maximum Ratings

Symbol	Parameter			FQB9N50CF	Units
$\mathrm{V}_{\text {DSS }}$	Drain-Source Voltage			500	V
${ }^{\text {I }}$	Drain Current	- Continuous ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) - Continuous ($\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$)		9	A
				5.7	A
I_{DM}	Drain Current	- Pulsed	(Note 1)	36	A
$\mathrm{V}_{\text {GSS }}$	Gate-Source Voltage			± 30	V
$\mathrm{E}_{\text {AS }}$	Single Pulsed Avalanche Energy		(Note 2)	300	mJ
${ }_{\text {AR }}$	Avalanche Current		(Note 1)	5	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy		(Note 1)	9.6	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns
P_{D}	Power Dissipation ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)			173	W
	- Derate above $25^{\circ} \mathrm{C}$			1.38	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range			-55 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum lead temperature for soldering purposes, $1 / 8$ " from case for 5 seconds			300	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Symbol	Parameter	FQB9N50CF	Units
$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance, Junction-to-Case	0.72	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta J \mathrm{~A}}$	Thermal Resistance, Junction-to-Ambient ${ }^{*}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance, Junction-to-Ambient	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FQB9N50CF	FQB9N50CFTM	D2-PAK	330 mm	24 mm	800
FQB9N50CFS	FQB9N50CFTM_WS	D2-PAK	330 mm	24 mm	800

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	500	--	--	V
$\begin{aligned} & \Delta \mathrm{BV}_{\mathrm{Dss}}{ }^{\prime} \\ & \Delta \mathrm{T}_{\mathrm{J}} \end{aligned}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	--	0.57	--	V/ ${ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	--	--	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	--	--	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {GSSF }}$	Gate-Body Leakage Current, Forward	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	--	--	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	--	--	-100	nA
On Characteristics						
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.0	--	4.0	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$	--	0.7	0.85	Ω
g_{FS}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A} \quad$ (Note 4)	--	6.5	--	S
Dynamic Characteristics						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	--	790	1030	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		--	130	170	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		--	24	30	pF
Switching Characteristics						
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=25 \Omega \end{aligned}$ (Note 4, 5)	--	18	45	ns
t_{r}	Turn-On Rise Time		--	65	140	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		--	93	195	ns
t_{f}	Turn-Off Fall Time		--	64	125	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=9 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$ (Note 4, 5)	--	28	35	nC
Q_{gs}	Gate-Source Charge		--	4	--	nC
Q_{gd}	Gate-Drain Charge		--	15	--	nC
Drain-Source Diode Characteristics and Maximum Ratings						
Is	Maximum Continuous Drain-Source Diode Forward Current		--	--	9	A
$\mathrm{I}_{\text {SM }}$	Maximum Pulsed Drain-Source Diode Forward Current		--	--	36	A
$\mathrm{V}_{\text {SD }}$	Drain-Source Diode Forward Voltage	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=9 \mathrm{~A}$	--	--	1.4	V
$\mathrm{t}_{\text {rr }}$	Reverse Recovery Time	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=9 \mathrm{~A}, \\ & \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$ (Note 4)	--	100	--	ns
Q_{rr}	Reverse Recovery Charge		--	300	--	nC

NOTES:

1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. $L=8 \mathrm{mH}, \mathrm{I}_{A S}=9 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}, R_{G}=25 \Omega$, Starting $T_{J}=25^{\circ} \mathrm{C}$
3. $\mathrm{I}_{\mathrm{SD}} \leq 9 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{BV}_{\mathrm{DSs}}$, Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
4. Pulse Test : Pulse width $\leq 300 \mu \mathrm{~s}$, Duty cycle $\leq 2 \%$
5. Essentially independent of operating temperature

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

Gate Charge Test Circuit \& Waveform

Resistive Switching Test Circuit \& Waveforms

Unclamped Inductive Switching Test Circuit \& Waveforms

Peak Diode Recovery dv/dt Test Circuit \& Waveforms

Body Diode Reverse Current
$V_{D s}$ (DUT)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FACT Quiet Series ${ }^{\text {TM }}$	OCX ${ }^{\text {™ }}$	SILENT SWITCHER ${ }^{\circledR}$	UniFET ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	OCXPro ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
Bottomless ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {¹ }}$	OPTOLOGIC ${ }^{\circledR}$	SPM ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
Build it Now $^{\text {™ }}$	$\mathrm{HiSeC}^{\text {тм }}$	OPTOPLANAR ${ }^{\text {™ }}$	Stealth ${ }^{\text {TM }}$	Wire ${ }^{\text {TM }}$
CoolFET ${ }^{\text {tM }}$	$\mathrm{I}^{2} \mathrm{C}^{\text {™ }}$	PACMAN ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	
CROSSVOLT ${ }^{\text {TM }}$	$i-L o^{\text {TM }}$	POP'м	SuperSOT ${ }^{\text {TM }}$-3	
DOME ${ }^{\text {M }}$	ImpliedDisconnect ${ }^{\text {TM }}$	Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
EcosPARK ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {™ }}$	PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	PowerSaver ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	LittleFET ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	TCM ${ }^{\text {m }}$	
FACT ${ }^{\text {tm }}$	MICROCOUPLER ${ }^{\text {TM }}$	QFET ${ }^{\circledR}$	TinyBoost ${ }^{\text {TM }}$	
$\mathrm{FAST}^{\text {® }}$	MicroFET ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$	
FPS ${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TinyPower ${ }^{\text {TM }}$	
FRFET ${ }^{\text {™ }}$	MSX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$	
	MSXPro ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {™ }}$	
Across the board. Around the world. ${ }^{\text {TM }}$		μ SerDes ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$	
The Power Franchise ${ }^{\circledR}$		ScalarPump ${ }^{\text {™ }}$	UHC ${ }^{\text {™ }}$	
Programmable Active Droop ${ }^{\text {™ }}$				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

FQB9N50CF
500V N－Channel MOSFET

Contents

－General description
－Features
－Product status／pricing／packaging
－Order Samples

General description

These N－Channel enhancement mode power field effect transistors are produced using Fairchild＇s proprietary，planar stripe，DMOS technology．

This advanced technology has been especially tailored to minimize on－state resistance，provide superior switching performance，and withstand high energy pulse in the avalanche and commutation mode．These devices are well suited for high efficiency switched mode power supplies，electronic lamp ballasts based on half bridge topology．
back to top

Features

－ $9 \mathrm{~A}, 500 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\text { on })}=0.85 \Omega @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
－Low gate charge（ typical 28nC）
－Low $\mathrm{C}_{\text {rss }}$（ typical 24 pF ）
－Fast switching
－ 100% avalanche tested
－Improved dv／dt capability

Related Links
Request samples
How to order products
Product Change Notices （PCNs）

Support
Sales support
Quality and reliability
Design center

back to top

Product status／pricing／packaging BUY

Product	Product status	Pb－free Status	Pricing＊	Package type	Leads	Packing method	Package Marking Convention＊＊

FQB9N50CFTM	Full Production		\$1.40	TO-263(D2PAK)	2	TAPE REEL	Line 1: \$Y (Fairchild logo) \&Z (Asm. Plant Code) \&E\&3 (3-Digit Date Code) Line 2: FQB Line 3: 9N50CF

* Fairchild 1,000 piece Budgetary Pricing
* A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samplesIndicates product with Pb -free second-level interconnect. For more information click here.
Package marking information for product FQB9N50CF is available. Click here for more information .

back to top

Qualification Support

Click on a product for detailed qualification data

Product
FQB9N50CFTM

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms \& Conditions | Standard Terms \& Conditions c

[^0]: When mounted on the minimum pad size recommended (PCB Mount)

