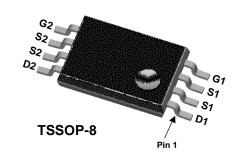
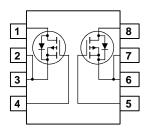
FAIRCHILD SEMICONDUCTOF

Dual 20V P-Channel PowerTrench[®] MOSFET

General Description


This P-Channel MOSFET is a rugged gate version of Fairchild's Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (4.5V - 20V).


Applications

- Load switch
- Battery protection
- DC/DC conversion
- Power management

Features

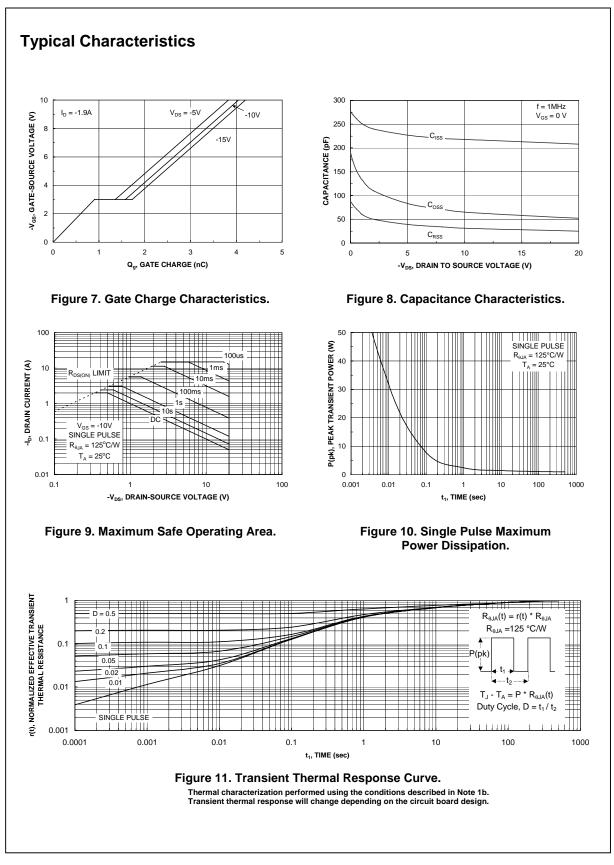
- -1.9 A, -20 V, $R_{DS(ON)} = 170 \text{ m}\Omega @ V_{GS} = -10 \text{ V}.$ $R_{DS(ON)} = 320 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}.$
- Extended V_{GSS} range (±20V) for battery applications
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low profile TSSOP-8 package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	ce Voltage		-20	V
V _{GSS}	Gate-Source	e Voltage		±20	V
ID	Drain Current – Continuous (Note 1)		(Note 1)	-1.9	A
		– Pulsed		–15	
P _D	Power Diss	ipation for Single Operation	(Note 1a)	1.0	W
			(Note 1b)	0.6	
T _J , T _{STG}	Operating a	perating and Storage Junction Temperature Range		-55 to +150	
Therma	l Charac	teristic			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)			100	°C/W
			(Note 1b)	125	
		g and Ordering In			
Device Marking		Device	Reel Size	Tape width	Quantity
		Si6953DQ	13"	12mm	2500 units

©2001 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS} Drain–Source Breakdown Voltage		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-22		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -20 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			-1	μΑ
GSSF	Gate-Body Leakage, Forward	$V_{GS} = -20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			-100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.8	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -10 \ V, & I_D = -1.9 \ A \\ V_{GS} = -4.5 \ V, & I_D = -1.3 \ A \\ V_{GS} = -10 \ V, \ I_D = -1.9 \ A, \ T_J = 125^\circ C \end{array} $		96 151 134	170 320 254	mΩ
D(on)	On–State Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-10			Α
g fs	Forward Transconductance	$V_{DS} = -15 \text{ V}, \qquad I_D = -1.9 \text{ A}$		4		S
Dvnamio	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		218		pF
Coss	Output Capacitance	f = 1.0 MHz		65		pF
Crss	Reverse Transfer Capacitance			31		pF
Switchir	ng Characteristics (Note 2)					
011101111	Turn-On Delay Time	$V_{DD} = -10V$, $I_D = -1 A$,		6	20	ns
	Turn-On Delay Time			15	25	ns
t _{d(on)}	Turn-On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10		
d(on) r	,	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \ \Omega$		12	30	ns
d(on) tr td(off)	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		-	-	ns ns
d(on)	Turn-On Rise Time Turn-Off Delay Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V}, I_F = 1.5 \text{ A},$ $dI_F/dt = 100 \text{ A}/\mu \text{s}$		12	30	-
d(on) r d(off) f	Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time	$V_{GS} = 0 \text{ V}, \text{ I}_{F} = 1.5 \text{ A},$ $d\text{I}_{F}/dt = 100 \text{A}/\mu\text{s}$ $V_{DS} = -10 \text{V}, \text{ I}_{D} = -1.9 \text{ A},$		12 1.5	30 15	ns
id(on) ir id(off) if if trr	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Reverse Recovery Time	V _{GS} = 0 V, I _F = 1.5 A, dI _F /dt = 100A/μs		12 1.5 11	30 15 70	ns ns
id(on) ir id(off) if irr	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Reverse Recovery Time Total Gate Charge	$V_{GS} = 0 \text{ V}, \text{ I}_{F} = 1.5 \text{ A},$ $d\text{I}_{F}/dt = 100 \text{A}/\mu\text{s}$ $V_{DS} = -10 \text{V}, \text{ I}_{D} = -1.9 \text{ A},$		12 1.5 11 4	30 15 70	ns ns nC
id(on) ;r ;d(off) ;f ;f ;f ;f ; ; , , , , , , , , , , , , ,	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Reverse Recovery Time Total Gate Charge Gate-Source Charge	$\begin{split} V_{GS} &= 0 \ V, \ I_F = 1.5 \ A, \\ dI_F/dt &= 100 A/\mu s \\ V_{DS} &= -10 V, \qquad I_D = -1.9 \ A, \\ V_{GS} &= -10 \ V \end{split}$		12 1.5 11 4 0.9	30 15 70	ns ns nC nC
id(on) ;r ;d(off) ;f ;f ;f ;f ; ; , , , , , , , , , , , , ,	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Reverse Recovery Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{GS} = 0 V, I_F = 1.5 A,$ $dI_F/dt = 100A/\mu s$ $V_{DS} = -10V, I_D = -1.9 A,$ $V_{GS} = -10 V$ and Maximum Ratings		12 1.5 11 4 0.9	30 15 70	ns ns nC nC


1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) $\rm R_{\rm BJA}$ is 100°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.

b) $R_{\theta JA}^{000}$ is 125°C/W (steady state) when mounted on a minimum copper pad on FR-4.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

Si6953DQ Rev. B (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

	Definition			
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.			
	In Design First Production Full Production			