Dual 1-of-4 Decoder/ Demultiplexer

High-Performance Silicon-Gate CMOS MC74HC139A

The MC74HC139A is identical in pinout to the LS139. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

This device consists of two independent 1-of-4 decoders, each of which decodes a two-bit Address to one-of-four active-low outputs. Active-low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 100 FETs or 25 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MARKING DIAGRAMS

A	$=$ Assembly Location
L, WL	$=$ Wafer Lot
Y, YY	$=$ Year
W, WW	$=$ Work Week
G or	$=$ Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74HC139ADR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74HC139ADTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC139ADR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC139ADTR2G*	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ADDRESS
INPUTS $\begin{cases}\mathrm{AO}_{\mathrm{b}} & \frac{14}{13} \\ \mathrm{~A} 1_{\mathrm{b}} & \frac{13}{} \\ \text { SELECT }\end{cases}$

FUNCTION TABLE

Inputs				Outputs			
Select	A1	A0	Y0	Y1	Y2	Y3	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

X = don't care

Figure 1. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
V OUT	DC Output Voltage (Referenced to GND) (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
In	DC Input Current, per Pin	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ Pin	± 50	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance $\begin{aligned} & \text { SOIC } \\ & \text { TSSOP }\end{aligned}$	$\begin{aligned} & 112 \\ & 148 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air at } 85^{\circ} \mathrm{C} & \text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30-35\%	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{aligned} & >2000 \\ & >200 \\ & >1000 \end{aligned}$	V
LLATCHUP	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Io absolute maximum rating must be observed.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{tf}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	V_{cc}	Guaranteed Limit			Unit
			V	$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\text {CC }}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \begin{aligned} & \mid \text { lout } \\ & \mid \text { lout }\end{aligned} \leq 4 \leq 5.0 \mathrm{~mA}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.70 \\ & 5.20 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \text { lout } \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	0.1 0.1 0.1	V
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}} \quad$$\left\lvert\, \begin{array}{l}\text { lout } \\ \mid \text { lout }\end{array} \leq 4.0 \mathrm{~mA}\right.$ 5.2 mA	$\begin{aligned} & \hline 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \end{aligned}$	
In	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{v} \end{gathered}$	Guaranteed Limit			Unit
			$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Select to Output Y (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 115 \\ & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & 145 \\ & 29 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 35 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Input A to Output Y (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 115 \\ & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & 145 \\ & 29 \\ & 25 \end{aligned}$	$\begin{aligned} & 175 \\ & 35 \\ & 30 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

7. For propagation delays with loads other than 50 pF , and information on typical parametric values, see the onsemi High-Speed CMOS Data Book (DL129/D).

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Decoder) (Note 8)	55	pF

8. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.

SWITCHING WAVEFORMS AND TEST CIRCUIT

Figure 2. Switching Waveform

Figure 3. Switching Waveform

* Includes all probe and jig capacitance

Figure 4. Test Circuit

PIN DESCRIPTIONS

ADDRESS INPUTS

$A 0_{a}, A 1_{a}, A 0_{b}, A 1_{b}$ (Pins 2, 3, 14, 13)
Address inputs. These inputs, when the respective 1 -of -4 decoder is enabled, determine which of its four active-low outputs is selected.

CONTROL INPUTS

Select $_{\mathrm{a}}$, Select $_{\mathrm{b}}$ (Pins 1, 15)

Active-low select inputs. For a low level on this input, the outputs for that particular decoder follow the Address
inputs. A high level on this input forces all outputs to a high level.

OUTPUTS

$$
\mathrm{Y} 0_{\mathrm{a}}-\mathrm{Y} 3_{\mathrm{a}}, \mathrm{Y} 0_{\mathrm{b}}-\mathrm{Y} 3_{\mathrm{b}}(\text { Pins } 4-7,12,11,10,9)
$$

Active-low outputs. These outputs assume a low level when addressed and the appropriate Select input is active. These outputs remain high when not addressed or the appropriate Select input is inactive.

Figure 5. Expanded Logic Diagram
(1/2 of Device)

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

