1-of-8 Decoder/ Demultiplexer

High-Performance Silicon-Gate CMOS

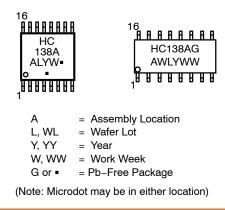
MC74HC138A

The MC74HC138A is identical in pinout to the LS138. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC138A decodes a three-bit Address to one-of-eight active-low outputs. This device features three Chip Select inputs, two active-low and one active-high to facilitate the demultiplexing, cascading, and chip-selecting functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output; one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 100 FETs or 29 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

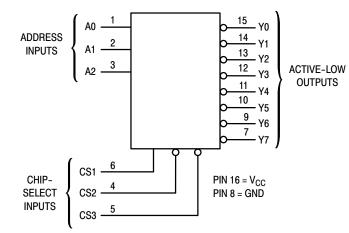


TSSOP-16 DT SUFFIX CASE 948F

SOIC-16 D SUFFIX CASE 751B

MARKING DIAGRAMS

_			_
A0 [16	l v _{cc}
A1 🛛	2	15	1 Y0
A2 🛛	3	14	D Y1
CS2 [4	13	1 Y2
сѕз 🛛	5	12	I Y3
CS1 [6	11	D Y4
Y7 🛛	7	10	D Y5
GND [8	9	D Y6


PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC138ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC138ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HC138ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC138ADR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC138ADTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MC74HC138A

FUNCTION TABLE

Outputs Y3 Y4 Y5 Y6 Y7
ннннн
нннн
ннннн
нннн
нннн
нннн
L Н Н Н Н
нгнн
ннснн
нннгн
нннн

H = high level (steady state);

L = low level (steady state);

X = don't care

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
I _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air SOIC Package [†] TSSOP Package [†]	500 450	mW
T _{stg}	Storage Temperature	–65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage

tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating – SOIC Package: – 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 .W/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$V_{\text{in}}, V_{\text{out}}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0 \text{ V}$ (Figure 2) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 500 400	ns

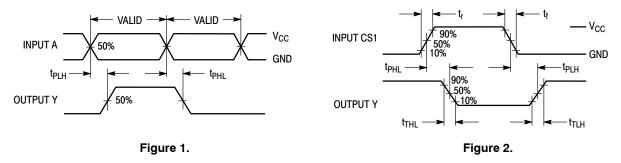
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

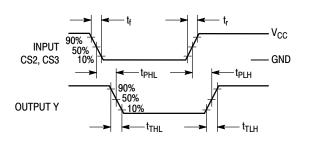
MC74HC138A

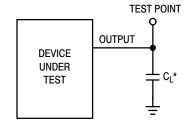
			V _{cc}	Guara	Guaranteed Limit		
Symbol	Parameter	Test Conditions	V	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ \left I_{out} \right \leq 20 \; \mu \text{A} \end{array}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ \left I_{out} \right \leq 20 \ \mu\text{A} \end{array}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High–Level Output Voltage	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \ \mu \text{A} \end{aligned} $	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{array}{l l} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{array} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \ \mu \text{A} \end{aligned} $	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} \begin{vmatrix} I_{out} \end{vmatrix} &\leq 2.4 \text{ mA} \\ \begin{vmatrix} I_{out} \end{vmatrix} &\leq 4.0 \text{ mA} \\ \begin{vmatrix} I_{out} \end{vmatrix} &\leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0 \ \mu A$	6.0	4	40	160	μA

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input t_r = t_f = 6.0 ns)


	V _{CC} Guaranteed Limit					
Symbol	Parameter	v	–55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 4)	2.0 3.0 4.5 6.0	135 90 27 23	170 125 34 29	205 165 41 35	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS1 to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	110 85 22 19	140 100 28 24	165 125 33 28	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS2 or CS3 to Output Y (Figures 3 and 4)	2.0 3.0 4.5 6.0	120 90 24 20	150 120 30 26	180 150 36 31	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 4)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF


		Typical @ 25°C, V _{CC} = 5.0 V				
C _{PD}	Power Dissipation Capacitance (Per Package)*	55	pF			
*Used to determine the no-load dynamic power consumption: $P_{D} = C_{DD} V_{DD}^{2}f + I_{DD} V_{DD}$						


*Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

MC74HC138A

SWITCHING WAVEFORMS

*Includes all probe and jig capacitance

Figure 3.

PIN DESCRIPTIONS

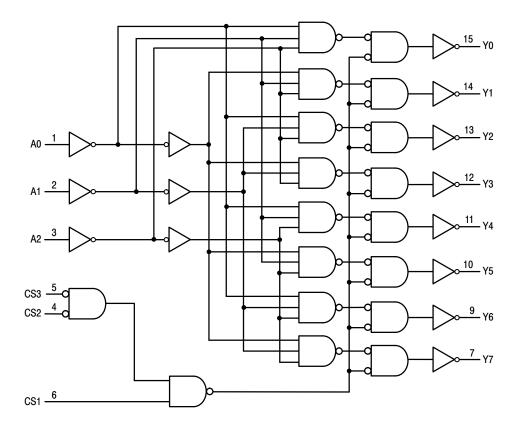
ADDRESS INPUTS

A0, A1, A2 (Pins 1, 2, 3)

Address inputs. These inputs, when the chip is selected, determine which of the eight outputs is active-low.

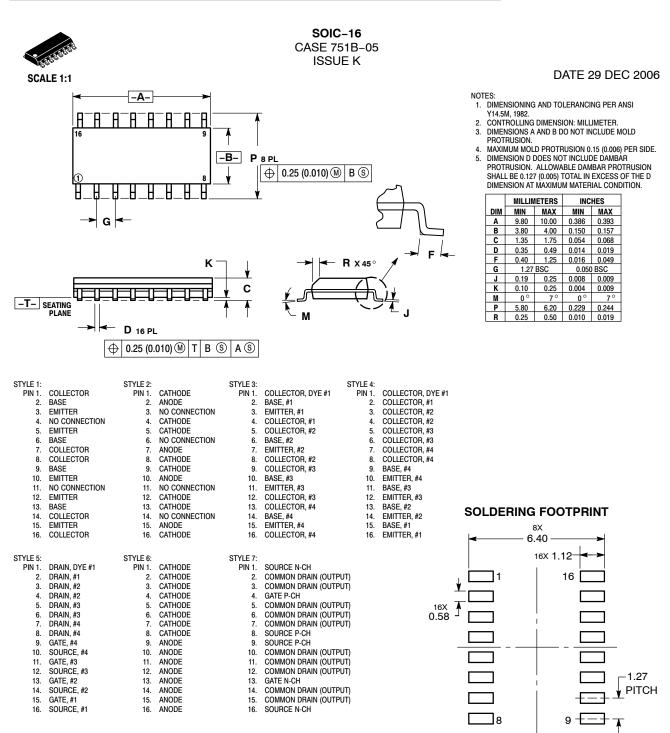
CONTROL INPUTS

CS1, CS2, CS3 (Pins 6, 4, 5)


Chip select inputs. For CS1 at a high level and CS2, CS3 at a low level, the chip is selected and the outputs follow the

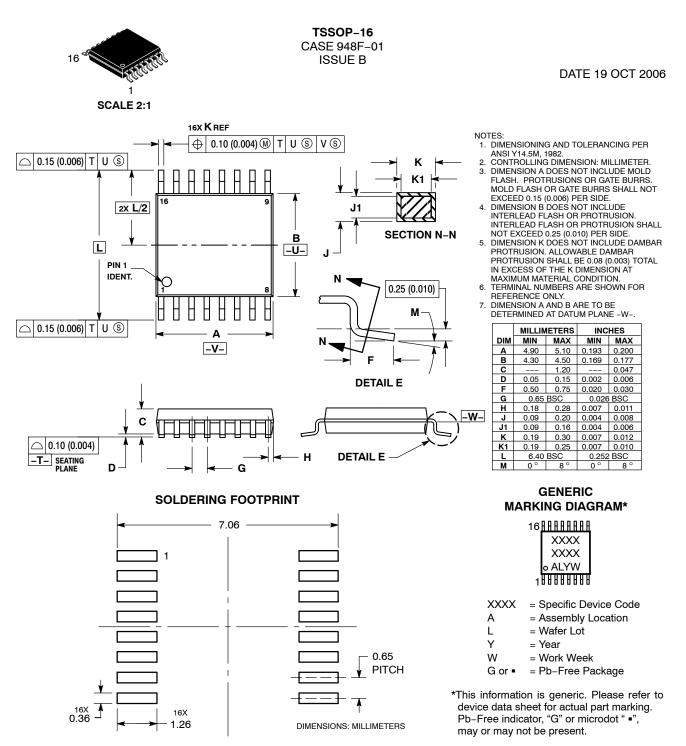
Address inputs. For any other combination of CS1, CS2, and CS3, the outputs are at a logic high.

OUTPUTS


Y0 - Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)

Active-low Decoded outputs. These outputs assume a low level when addressed and the chip is selected. These outputs remain high when not addressed or the chip is not selected.

EXPANDED LOGIC DIAGRAM



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		
ON Semiconductor and user trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>