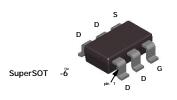
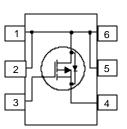
September 2001

FDC638P

P-Channel 2.5V PowerTrench[®] Specified MOSFET


General Description


This PChannel 2.5V specified MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance

These devices are well suited for battery power applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- -4.5 A, -20 V. $R_{DS(ON)}$ = 48 m Ω @ V_{GS} = -4.5 V $R_{DS(ON)}$ = 65 m Ω @ V_{GS} = -2.5 V
- Low gate charge (10 nC typical)
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- SuperSOT [™] –6 package: small footprint (72% smaller than standard SO-8; low profile (1mm thick)

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
l _D	Drain Current – Continuous	(Note 1a)	-4.5	А
	– Pulsed		-20	
PD	Power Dissipation for Single Operation	(Note 1a)	1.6	w
		(Note 1b)	0.8	VV
T _J , T _{STG}	Operating and Storage Junction Temperatu	re Range	-55 to +150	°C
Therma	I Characteristics			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

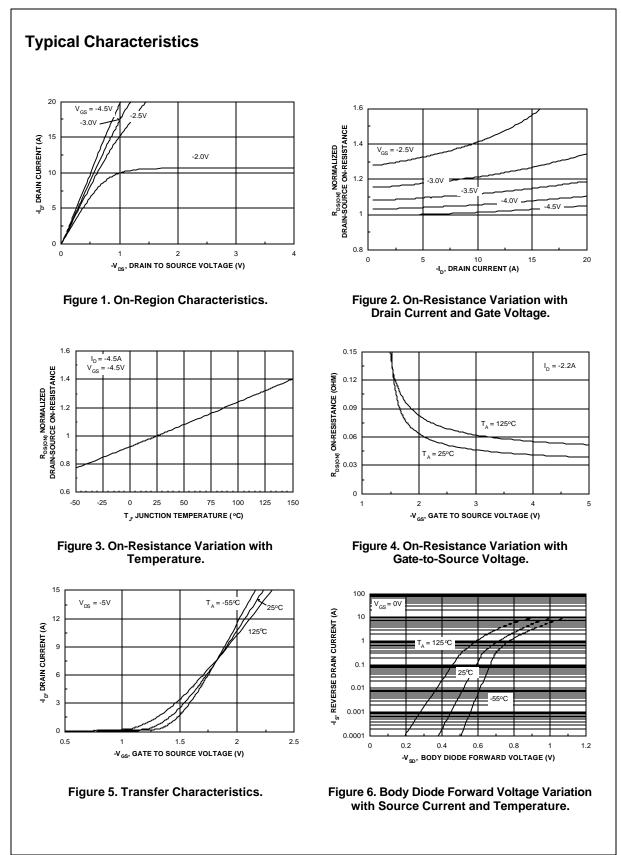
Package Marking and Ordering Information

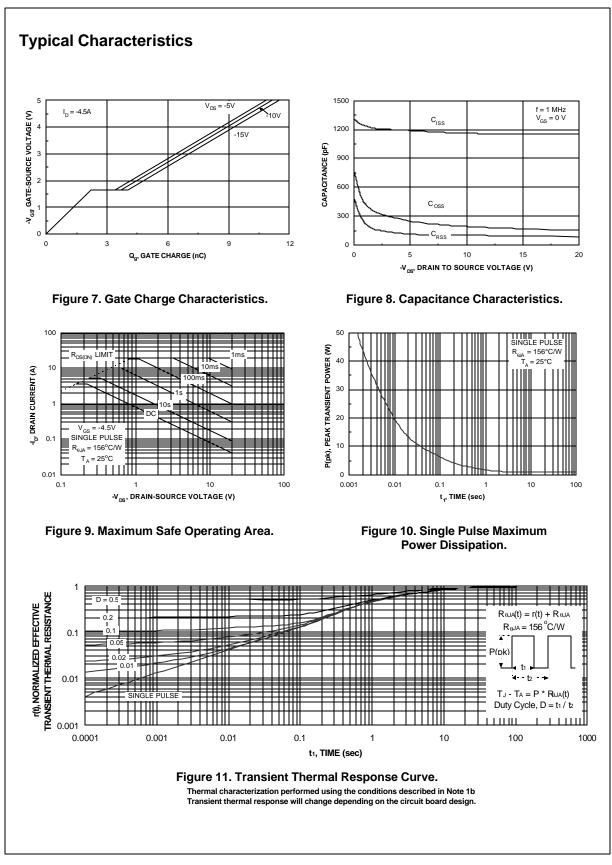
Device Marking	Device	Reel Size	Tape width	Quantity	
.638	.638 FDC638P 7"		8mm	3000 units	

©2001 Fairchild Semiconductor Corporation

FDC638P

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$l_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		-14		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
GSSF	Gate–Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.4	-0.8	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{\rm GS} = -4.5 \ V, & I_{\rm D} = -4.5 \ A \\ V_{\rm GS} = -2.5 \ V, & I_{\rm D} = -3.8 \ A \\ V_{\rm GS} = -4.5 \ V, \ I_{\rm D} = -4.5 \ T_{\rm J} = 125^{\circ} C \end{array} $		39 52 54	48 65 72	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-20			А
g fs	Forward Transconductance	$V_{DS} = -10 V$, $I_D = -4.5 A$		15		S
Dvnamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		1160		pF
Coss	Output Capacitance	f = 1.0 MHz		195		pF
Crss	Reverse Transfer Capacitance			105		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -5 V$, $I_D = -1 A$,		12	22	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		9	18	ns
t _{d(off)}	Turn–Off Delay Time			33	53	ns
t _f	Turn–Off Fall Time			12	22	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -4.5 A$,		10	14	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		2.2		nC
Q _{gd}	Gate-Drain Charge			1.5		nC
Drain-Se	ource Diode Characteristics a	and Maximum Ratings		1		
ls	Maximum Continuous Drain–Source I	•			-1.3	А
-	Drain–Source Diode Forward	$V_{GS} = 0 V$, $I_{S} = -1.3 A$ (Note 2)		-0.73	-1.2	V


a) 78°C/W when mounted on a 1in² pad of 2 oz copper


b) 156°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%

FDC638P Rev F (W)

FDC638P

FDC638P

FDC638P Rev F (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production

Home >> Find products >>

General description

FDC638P

Single P-Channel 2.5V Specified PowerTrench MOSFET

Contents

•<u>General description</u> •<u>Features</u> •<u>Product status/pricing/packaging</u> •Order Samples

<u>Models</u>
<u>Qualification Support</u>

BUY Datasheet Download this

<u></u> =- '

This page Print version

Analysis

This product Use in FETBench

e-mail this datasheet

Design as

This P-Channel 2.5V specified MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance These devices are well suited for battery power applications: load switching and power management, battery charging circuits, and DC/DC conversion.

back to top

Features

- -4.5 A, -20 V
 - \circ R_{DS(ON)} = 48 m Ω @ V_{GS} = -4.5 V
 - \circ R_{DS(ON)} = 65 m Ω @ V_{GS} = -2.5 V
- Low gate charge (10nC typical).
- High performance trench technology for extremely low R_{DS(ON)}
- SuperSOT™-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick).

back to top

Product status/pricing/packaging

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method	Package Marking Convention**

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

<u>Guanty and rendomity</u>

Design center

FET Bench .com

FDC638P	Full Production	Full Production	\$0.316	<u>SSOT-6</u>	6	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .638
FDC638P_NF073	Full Production	Full Production	N/A	<u>SSOT-6</u>	6	Line 1: &E& Y (Binary Calendar Year Coding) Line 2: .638

* Fairchild 1,000 piece Budgetary Pricing ** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a <u>Fairchild distributor</u> to obtain samples

Ø Indicates product with Pb-free second-level interconnect. For more information click here.

Package marking information for product FDC638P is available. Click here for more information .

back to top

Models

Package & leads Condition Temperature range			Software version	Revision date		
PSPICE						
SSOT-6-6 Electrical 25°C to 125°C Orcad 9.1 Jan 23, 2001						

back to top

Qualification Support

Click on a product for detailed qualification data

Product						
FDC638P						
FDC638P_NF073						

back to top

© 2007 Fairchild Semiconductor

