

INTRODUCTION

The WS75XX series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input output voltage is small. The WS75XX series can deliver 250mA output current and allow an input voltage as high as 36V. The series are very suitable for the battery powered equipments, such as RF applications and other systems requiring a quiet voltage source.

SOT-89-3L

Marking: HT75xx

- Cordless Phones
- Radio control systems
- Laptop, Palmtops and PDAs
- Single-lens reflex DSC
- PC peripherals with memory
- Wireless Communication Equipments
- Portable Audio Video Equipments
- Car Navigation Systems
- LAN Cards
- Ultra Low Power Microcontrollers

SOT-89-3L Plastic-Encapsulate Voltage Regulators

特征 Features

- Low Quiescent Current: 2μA
- Operating Voltage Range: 2.5V∼36V
- Output Current: 250mA
- Low Dropout Voltage: 700mV@100mA(VOUT=3.3V)
- Output Voltage: 2.1~ 12V
- High Accuracy: ±2%/±1%(Typ.)
- High Power Supply Rejection Ratio: 70dB@1kHz
- Low Output Noise:27xVOUT μVRMS(10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection
- Stable with Ceramic or TantalumCapacitor

机械数据 Mechanical Data

- SOT-89-3L Small Outline Plastic Package
- Epoxy UL: 94V-0
- Mounting Position: Any

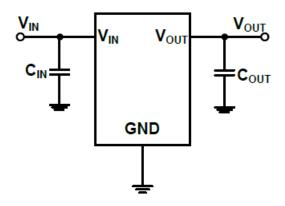
Absolute Maximum Ratings (Unless otherwise specified, TA=25 ℃)

Parameters	Symbol	Value	Unit
Input Voltage	Vi	-0.3~40	V
Output Voltage	Vout	-0.3~13	V
Power Dissipation	Pd	0.6	W
Operating Ambient Temperature Range	Та	-40~+85	°C
Operating Junction Temperature Range	Tj	-40~+125	°C
Storage Temperature Range	Tstg	-40~+125	°C
Lead Temperature(Soldering, 10 sec)	Tsolder	260	°C

MODEL DEFINITION INFORMATION

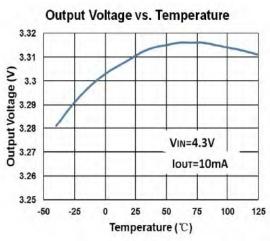
Mode I	Output Voltage		
7521	2.1V		
7523	2.3V		
7525	2.5V		
7527	2.7V		
7530	3.0V		
7533	3.3V		
7536	3.6V		
7540	4.0V		
7544	4.4V		
7550	5.0V		
7560	6.0V		
7570	7.0V		
7580	8.0V		
7590	9.0V		
75A0	10.0V		
75C0	12.0V		

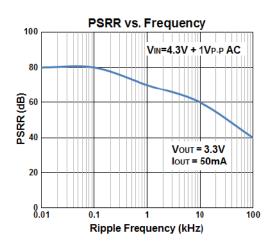
version: 02

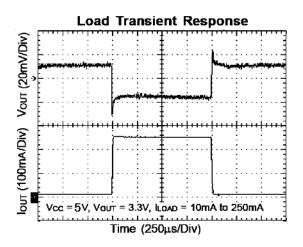

Electrical Characteristics at Specified Virtual Junction Temperature

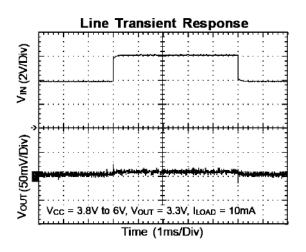
PARAMETER	SYMBOL	CONDI	TIONS	MIN.	TYP.(4)	MAX.	UNITS
Input Voltage	V _{IN}			2.5	_	36	V
Output Voltage Range	Vouт			2.1	_	12	V
DC Output Accuracy		I _{OUT} =10mA		-2	_	2	%
				-1	_	1	%
Dropout Voltage	V _{dif} ⁽⁵⁾	I _{OUT} =100mA,V _{OUT} =3.3V		_	700	_	mV
Supply Current	I _{SS}	I _{OUT} =0A		_	2	5	μΑ
Line Regulation	ΔV_{OUT}	I _{OUT} =	I0mA		0.01	0.3	%/V
	$V_{OUT} \times \Delta V_{IN}$	V _{OUT} +1V≤V _{IN} ≤36V		_			
Load Regulation	<u> </u>	V _{IN} = V _{OI}	: V _{OUT} +2V,		10		m∨
	<u>∆</u> ∨001	1mA≤I _{OUT}	≤100mA		10	_	IIIV
Temperature	ΔV_{OUT}	I _{OUT} =40mA,			50		nnm
Coefficient	$\overline{V_{OUT} \times \Delta T_A}$	-40°C <t<sub>A<85°C</t<sub>			50		ppm
Output Current Limit	I _{LIM}	V _{OUT} = 0.5 x V _{OUT(Normal)}			350		mA
Short Current	I _{SHORT}	V _{OUT} =V _{SS}		_	25	_	mA
		I _{OUT} =50mA	100Hz		80		
Power Supply	BCDD		1kHz	_	70	_	-10
Rejection Ratio	PSRR		10kHz	_	60	-	dB
			100kHz	_	50	_	
Output Noise Voltage	Von	BW=10Hz to 100kHz		_	27 x V _{OUT}	_	μV _{RMS}
Thermal Shutdown Temperature	T _{SD}	I _{LOAD} = 30mA		_	160	_	°C
Thermal Shutdown Hysteresis	ΔT _{SD}			_	20	_	°C

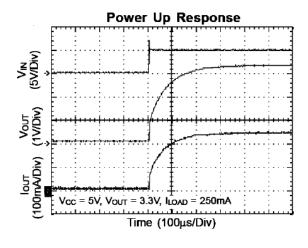
⁽⁴⁾ Typical numbers are at 25°C and represent the most likely norm.

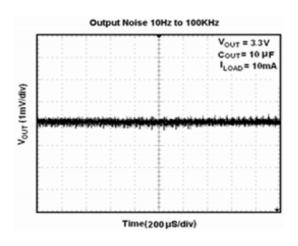

(5)Vdif: The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of Vout (E).

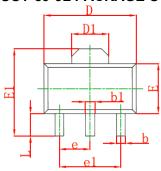

* Pulse test. TYPICAL APPLICTION

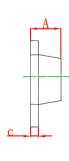




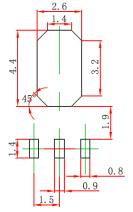

Typical characteristics







SOT-89-3L PACKAGE OUTLINE Plastic surface mounted package



Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.061 REF.		
Е	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
L	0.900	1.200	0.035	0.047	

Precautions: PCB Design

Recommended land dimensions for SOT-89-3L diode. Electrode patterns for PCBs

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.