

Lens driver for Digital Still Camera

Chip description:

GC6236 is a system Lens Driver that uses μ -step driving to make the configuration of the sophisticated, high precision and low noise lens driver system possible. This IC has a built-in driver for both DC moor and voice coil motor and a μ -step controller that decreases CPU power. Therefore, multifunctional lens can be applied.

Chip features:

- Built-in 6 Channel H bridge motor drivers
 1ch-4ch: Voltage control type H-bridge (Adaptable to STM 2systems)
 5ch: Voltage / Current control type H-bridge
 6ch: Current control type H-bridge
- 0.5A rms current per channel
- Built-in 2 channels PI driver
- Built-in FLL digital servo circuit
- Built-in PLL circuit for variety system clock
- Built-in STM control circuit: Autonomous control (cache / up down mode), Clock IN control

Chip application:

- Digital still Cameras
- Shaking head machine

Product name	Package Type	Detail			
I Toutet name	Tackage Type	description			
GC6236	QFN40	5.0*5.0, e=0.4			

Packaging Introduction

Per Tray	Per Box	Per Case
4K	8K	64K

Pin Map:

Pin Description:

Pin No.	Pin Name	I/O	Pin Function
1	SI	Ι	Wave input
2	OUT1A	0	1ch Driver A output
3	MVCC12	POWER	1, 2ch power supply

			1ch Driver B output
4	OUT1B	0	
			2ch Driver A output
5	OUT2A	0	Zen Driver A output
6	MGND12	GND	1, 2ch GND
7	OUT2B	0	2ch Driver B output
8	PIOUT1	0	PI driver output 1
9	PIOUT2	0	PI driver output 1
10	VDDAMP	POWER	5, 6ch Analog power supply
11	SENS5	I/O	5ch sense resister connect
12	OUT5A	0	5ch Driver A output
13	RNF5	I/O	5ch power supply
14	OUT5B	0	5ch Driver B output
15	MGND56	GND	5, 6ch GND
16	OUT6A	0	6ch Driver A output
17	RNF6	I/O	6ch power supply
18	OUT6B	0	6ch Driver B output
19	SENSE6	I/O	6ch sense resister connect
20	SATE11	I/O	State11 input/output
21	SCLK	Ι	SPI clock input
22	CSB	Ι	SPI CSB input
23	SDATA	I/O	SPI DATA input
24	OUT3A	0	3ch Driver A output
25	MVCC34	POWER	3, 4ch power supply
26	OUT3B	0	3ch Driver B output
27	OUT4A	0	4ch Driver A output
28	MGND34	GND	3, 4ch GND
29	OUT4B	0	4ch Driver B output
30	TEST	I	TEST logic input
31	STATE21	I/O	State21 input/output
32	FCLK	I	Reference clock input
33	STATE22	0	State22 output
34	STATE12	0	State12 output
35	SO	0	Wave output

36	INA	Ι	INA logic input
37	INB	Ι	INB logic input
38	DVDDIO	POWER	IO power supply
39	DVSS	GND	Ditital GND
40	DVDD	POWER	Digital power

Block Diagram :

Absolute Maximum Ratings:

Symbol	Parameter	Rating	Unit
DVDDIO,	Logic nower supply range	0.3-4.5	V
DVDD	Logic power suppry range	-0.5~+.5	v
MVCC	Motor power supply range	-0.3~7	V
VIN	Logic input voltage range	-0.3~VDVDDIO+0.3	V
Irms	Max Rms current, OUTxx	± 800	mA
Ірі	PIOUTx current	+50	mA
Tjmax	Operating virtual junction temperatures	-40~150	°C
Tstg	Storage Temperature	-60~150	°C
ESD	ESD (HBM)	±3000	V

(over operating free-air temperature range (unless otherwise noted)

Electrical Characteristics:

Recommended Operating Conditions

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Motor power supply	MVCC		3.0		5.5	V	
Logic power supply	DVDD		2.8		3.6	V	
IO power supply	DVDDIO		1.60		3.6	V	
Motor current	IOUT		0		0.5	А	
Clock operating frequency	FCLK		1		28	MHz	
Operating ambient	Та		-40		100	°C	
temperature	Iu		10		100		

 $Electrical \ Characteristics: \ (unless otherwise specified , T=25^{\circ}C, \ DVDD=DVDDIO=3.3V, \ MVCCx=5V)$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
DVDDIO quiescence current	ISSdo	CMD_RS=0		0	10	uA
DVDD quiescence current	ISSD	CMD_RS=0		50	95	uA
MVCC quiescence current	ISSDM	CMD_RS=0		0	10	uA
DVDDIO operation current	ISSoo	CMD_RS=0		0.1	1	mA
DVDD operation current	ISSod	CMD_RS=0		6	10	mA
OUT driver						
STM voltage driver 1ch~4	ch					
D daan yn i daryn	RdsON1	Io=100mA;1ch,2ch		2.0		Ω
Kason,up+aown	RdsON2	Io=100mA;3ch,4ch		1.5		Ω
When off leakage current	Ioff	Vout=0V	-10		10	uA
Average voltage accuracy between different output pins	Vdiff	Vdiff setting:2Bh	-5		+5	%

5ch ,voltage/current drive	ſ					
Rdson,up+down	RdsON3	Io=100mA		1.0		Ω
When off leakage current	IOFF5	Vout=0V	-10		10	uA
Output current	Iout	At current mode,DAC setting:80h,RRNF=1Ω		200		mA
6ch ,current driver						
Rdson,up+down	RdsON3	Io=100mA		1.0		Ω
When off leakage current	IOFF5	Vout=0V	-10		10	uA
Output current	Iout	At current mode,DAC setting:80h,RRNF=1Ω	200			mA
Logic input/output						
Input logic-low voltage falling threshold	V _{IL}		0		0.3* DVDDIO	V
Input logic-high voltage rising threshold	V_{IH}		0.7* DVDDIO		DVDDIO	V
Input logic low current	I _{IL}	Vin=0	0		10	uA
Input logic high current	I _{IH}	Vin=DVDDIO	0		10	uA
Output logic-low	Vol	I=1mA	0		0.2* DVDDIO	V
Output logic-hign	Vон	I=1mA	0.8* DVDDIO		DVDDIO	V
PI Driving circuit						
Output voltage	PIvo	I=30mA		0.15	0.5	V
Waveforming circuit						
Detective voltage error	Vth	Vth setting: 20h		1.5		V

Function Description:

Stepping motor driver (1ch~4ch)

Built-in stepping motor driver of PWM driving type.

Maximum 2 stepping motors can be driven independently.

Built-in voltage feedback circuit of D-class type.

3ch/4ch drivers can also drive independently for DC motor or voice coil motor.

STM Control

It corresponds to both the Clock IN and the Autonomous control.

(1) Clock IN Control

Set the registers for the stepping motor control.

The stepping motor is rotated and synchronized with the input clock in the STATE pin.

It is possible to select the mode of stepping motor control from μ -step, 1-2 phase excitation, 2 phase excitation and the number of edge for electrical angle cycle from 4, 8, 32, 64, 128, 256, 512 or 1024.

(2) Autonomous Control

The stepping motor is rotated by setting the registers for the stepping motor control.

It is possible to select the mode of stepping motor control from μ -step (1024 portion), 1-2 phase excitation and 2 phase excitation.

Cache Method:

Built-in Cache registers.Cache registers enable the setting of subsequent process while the motor is in

operation. Through these registers, operations are done continuously. The state of rotation command (ACT), state

of Cache registers (BUSY), motor operation position (MO), and state of excitation (MO&EN) are synchronized with

the motor rotation and can be selected to be the output of the STATE pin.

Up Down Method:

It is possible to set Up, Constant and Down operation before the motor operates.

The state of rotation command (ACT), Cache register (BUSY), motor position (MO), and excitation (MO&EN) synchronized with the motor rotation are the output of the STATE pin.

Voltage / Current Driver (5ch Driver)

Built-in voltage driver of PWM driving type / constant current driver.

Built-in digital FLL speed control logic for voltage driver.

(1) Control

(1)Register Control

■Voltage Driver (at speed control = OFF)

The PWM drive is executed by the PWM duty ratio, the PWM direction and the PWM ON/OFF which are controlled by the register settings.

■Voltage Driver (at speed control = ON)

The speed control drive is executed by the target speed value, the direction, the coefficient value of PI filter and the turning ON/OFF which are controlled by the register settings.

The motor speed is adjusted by comparing the target speed with the motor speed detected at the signal of

photo-interrupter.

■Current Driver

The constant current drive is executed by the output current value, the current direction and the current ON/OFF which are controlled by the register settings.

(2) External Pin Control

■Voltage Driver (only at speed control = OFF)

The PWM drive is executed by the PWM duty ratio which is controlled by the register setting. The PWM direction and PWM ON/OFF are controlled by INA/INB pin.

■Current Driver

The constant current drive is executed by the output current value which is controlled by the register setting. Constant current driving direction and turning ON/OFF are controlled by INA/INB pin

Current Driver (6ch Driver)

Built-in constant current driver.

The voltage of RNF pin and the external resistor (RRNF) determine the amount of output current. The internal high-precision amplifier (CMOS gate input) is used for the constant current control. If any resistance component exists in the wirings of RNF pin and the external resistor (RRNF), the precision can be reduced. To avoid this, pay utmost attention to the wirings.

(1) Control

(a) Register Control

The constant current drive is executed by the output current value, the current direction and the current ON/OFF

which are controlled by the register settings.

(**b**) External Pin Control

The constant current drive is executed by the output current value which is controlled by the register setting. Constant current driving direction and turning ON/OFF are controlled by INA/INB pin.

Serial interface

Control commands are framed by a 16-bit serial input (MSB first) and are sent through the CSB, SCLK, and SDATA pins. The 4 higher-order bits specify addresses, while the remaining 12 bits specify data. Data of every bit is sent through SDATA pin, which is retrieved during the rising edge of SCLK. Data becomes valid when CSB is Low and is registered during the rising edge of CSB.

Register map

A	ddre	ss[3:0	D]					Data[11:0]											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
0	0	0	0	A_Mo	de[1:0]	1.	A_SEL[2:0]			A_differen	t_output_v	oltage[6:0]						
						0	0	0	0			A_Cyc	cle[5:0]			0	0		
				0	0	1	0				A_Cyc	le[13:6]							
0	0	0	1	0	1	0	0	0	0	0	0		A_Start_	POS[3:0]					
		· ·		0	1	1	0	A_BEXC	0	0	A_BSL	A_AEXC	0	0	A_ASL				
				1	1	1	0	0	0	A_PC	OS[1:0]	0	A_UPDW _Stop	A_PS	A_Stop				
0	0	1	0	A_EN	A_RT			S	A_Puls	e[9:0] / A_	UPDW_Cy	cle[9:0]			6				
0	1	0	0	B_Mo	de[1:0]		B_SEL[2:0]			B_differen	t_output_v	oltage[6:0]						
				0	0	0	0			B_Cyc	cle[5:0]			0	0				
				0	0	1	0				B_Cyc	le[13:6]			·				
				0	1	0	0	0	0	0	0		B_Start_	POS[3:0]					
				0	1	1	0	B_BEXC	0	0	B_BSL	B_AEXC	0	0	B_ASL				
0	1	0	1	1	0	0	0	0	0	3_CHO	DP[1:0]	0	0	4_CHC	DP[1:0]				
				1	0	1	3_State	CTL[1:0]			3_F	WM_Duty[6:0]						
				1	1	0	4_State	CTL[1:0]			4_F	WM_Duty[6:0]						
							1	1	1	0	0	0	B_PC	S[1:0]	0	B_UPDW _Stop	B_PS	B_Stop	
0	1	1	0	B_EN	B_RT				B_Puls	e[9:0] / B_	UPDW_Cy	cle[9:0]							
1	0	1	1	0	0	0	0	B_ANSEL	A_ANSEL	Edge	0	0	0	B_CTL	A_CTL				
	U			0	0	1	0	0	0	0	0	0	0	EXT_C	TL[1:0]				
1	1	0	0	0	0	Choppi	ing[1:0]	CacheM	0	5_Mode	CLK_EN		CLK_E	DIV[3:0]					
				0	0	0	0	0	0	0	0	0	0	PI_CTL2	PI_CTL1				
				0	0	1	0	DET_SEL	0	SPE	N[1:0]	0	0	0	0				
1	1	0	1	0	1	1	0				TARS	P[7:0]							
1		U		0	1	1	1	0		PSP[2:0]		0		ISP[2:0]					
								1	0	0	0	SPC_ Limit_Out	0	0	0		SPC_L	imit[3:0]	
				0	0	0	0				5_101	JT[7:0]							
				0	0	1	0	0			5_F	WM_Duty	6:0]						
				0	1	0	0	0	0	5_CHO	OP[1:0]	0	0	5_State	CTL[1:0]				
	4	4	_	0	1	1	0	0	0	0	0	0	6_9	State_CTL[2:0]				
1			0	1	0	0	0				6_101	JT[7:0]							
				1	0	1	0	0	0			Waveform	_Vthh[5:0]						
				1	0	1	1	0	0			Waveform	_Vthl[5:0]						
				1	1	0	0	0	0	0	STB	0	0	STM_RS	CMD_RS				

Typical Application

Package Information

