

JANUARY 2020

GENERAL DESCRIPTION

The SP510E is a highly integrated physical layer solution that is configurable to support multiple serial standards. It incorporates eight drivers and eight receivers (8TX/8RX), configurable for differential (V.11 or V.35) or single ended (V.28 and V.10) signaling.

SP510E enables a Serial Communications Controller to implement a variety of serial port types including V.24, V.25, V.36, EIA-530, EIA-530-A, X.21, RS-232. The device architecture is designed to support the data and clock signals used in HDLC or SDLC serial ports as either DTE or DCE.

Operating configuration is programmable in system using the mode-select pins. The V.11 and V.35 modes include internal bus termination that may be switched in or out using the TERM_OFF pin.

The SP510E is ideal for space constrained applications. It requires only a single 5V supply for full operation. The V_I pin determines the receiver output voltage (V_{OH}, down to 1.65V), for interfacing with lower voltage CPUs and FPGAs. For single supply operation at 5V the V_1 pin will be connected to V_{CC} .

Fully compliant V.28 and V.10 driver output voltages are generated using the onboard charge pump. Special power sequencing is not required during system startup. Charge pump outputs are internally regulated to minimize power consumption. The SP510E requires only four 1µF capacitors for complete functionality. The device may be put into a low power shutdown mode when not in active use.

All receivers have fail-safe protection to put outputs into an output-high state when inputs are open, shorted, or terminated but idle.

FEATURES

Up to 52Mbps Differential Transmission Rates

ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVER

- ±15kV HBM ESD Tolerance for Analog I/O Pins
- Integrated Termination Resistors for V.11/V.35
- Eight Drivers and Eight Receivers (8TX/8RX)
- Adjustable Logic Level Pin V_I (Down to 1.65V)
- Software Selectable Protocols with 3-Bit Word:
 - RS-232 (V.28)
 - EIA-530 (V.10 & V.11)
 - EIA-530A (V.10 & V.11)
 - X.21 (V.11)
 - RS-449/V.36
- Internal Line or Digital Loopback Testing
- Adheres to NET1/NET2 and TBR2 Requirements
- Easy Flow-Through Pinout
- Single +5V Supply Voltage
- Individual Driver/Receiver Enable/Disable Controls
- Operates in DTE or DCE Mode
- Pin Compatible Upgrade for SP509, SP508

TYPICAL APPLICATIONS

- Data Communication Networks
- Telecommunication Equipment
- Secured Data Communication
- CSU and DSU
- Data Routers
- Network Switches
- WAN Access Equipment
- VoIP-PBX Gateways

ORDERING INFORMATION(1)

PART NUMBER	OPERATING TEMPERATURE RANGE	PACKAGE	PACKAGING METHOD	LEAD-FREE ⁽²⁾
SP510EEF-L	-40°C to +85°C	100-pin LQFP	Tray	Yes
SP510ECF-L	0°C to +70°C	100-pin LQFP	Tray	Yes

Notes:

- Refer to http://www.maxlinear.com/SP510E for most up-to-date Ordering Information.
- 2. Visit www.maxlinear.com for additional information on Environmental Rating.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Supply Voltage V _{CC}	+7.0V
Logic-Interface Voltage (V _L)	$V_L \le V_{CC}$
Receiver DC Input Voltage	±15.5V
Input Voltage at TTL Input Pins	-0.3V to (V _{CC} + 0.5V)
Driver Output Voltage (from Ground)	-7.5V to +12.5V
Short Circuit Duration, TxOUT to GND	Continuous
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation at T_{AMB} = +70°C 100-Pin LQFP (derate 19mW/°C above +70°C) θ_{JA} = 52.7°C/W, θ_{JC} = 6.5°C/W	1520mW

ESD PROTECTION

TX Output & RX Input Pins	±15	kV	Human Body Model
All Other Pins	±2	kV	Human Body Model

TABLE 1: DC ELECTRICAL CHARACTERISTICS

PARAMETERS	SYMBOL	TEST CONDITIONS	Min	Түр	Max	Unit
V _{CC} Supply Voltage	V _{CC}		4.75		5.25	V
Logic Interface Voltage	V _L	$V_L \le V_{CC}$	1.65		5.25	V
I _{CC} Supply Current	I _{CC}				300	mA
I _{CC} Shutdown	I _{CCSD}			200		μA
DRIVER INPUT AND LOGIC INPUT PI	NS					
Logic Input High	V _{IH}		1.6			V
Logic Input Low	V _{IL}				0.4	V
RECEIVER OUTPUTS						
Receiver Logic Output Low	V _{OL}	I _{OUT} = -3.2 mA			0.4	V
Receiver Logic Output High	V _{OH}	I _{OUT} = 1 mA V _L -0.3			V _L +0.3	V
Receiver Output Short-Circuit Current	I _{OSS}	0V < V _O < V _{CC}	< V _{CC}		±60	mA
Receiver Output Leakage Current	l _{OZ}	Receivers disabled 0.4V < V _O < 5.25V		±0.05	±1	μA
V.28 / RS-232 DRIVERS			1			
	V _T	Output load = $3k\Omega$ to GND Figure 3	±5	±6	±15	V
Output Voltage Swing	V _{OC}	Open Circuit Output Figure 2			±15	V
Short Circuit Current	I _{SC}	V _{OUT} = 0V, Figure 5			±100	mA
Power-Off Impedance		Figure 6	300	10M		Ω
V.28 / RS-232 Receivers						
Input Voltage Range			-15		15	V
Input Threshold Low			0.8	1.2		V
Input Threshold High				1.7	3	V
Input Hysteresis				500		mV
Input Resistance		Figure 8	3	5	7	kΩ
Open Circuit Bias	V _{OC}	Figure 9			±2	V

Receiver Input Hysteresis

DC ELECTRICAL CHARACTERISTICS Vcc = +4.75V to +5.25V, C1-C4 = 1 μ F. T_{AMB} = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_{AMB} = +25°C **PARAMETERS** SYMBOL **TEST CONDITIONS** MIN TYP Max UNIT V.10 / RS-423 DRIVERS Figure 10 ٧ Open Circuit Voltage V_{OC} ±4 ±6 **Test Terminated Voltage** V_{T} Figure 11 $0.9V_{OC}$ V **Short Circuit Current** Figure 12 ±150 mΑ I_{SC} Power-Off Current Figure 13 ±100 μΑ V.10 / RS-423 RECEIVERS Input Current Figure 15 and Figure 16 -3.25 +3.25 I_{IA} mA Input Impedance 4 15 kΩ Sensitivity ±0.2 V V.11 / RS-422 DRIVERS ٧ Open Circuit Voltage V_{OCA}, V_{OCB} Figure 17 ±6 Test Terminated Voltage V_{T} Figure 18 ±2 V Balance ΔV_{T} Figure 18 V ±0.4 Driver DC Offset V_{OS} Figure 18 3 V Offset Balance Figure 18 ±0.4 V ΔV_{OS} Short Circuit Output Current I_{SA}, I_{SB} Figure 19 ±150 mΑ Power-Off Current Figure 20 ±100 μΑ V.11 / RS-422 RECEIVERS Receiver Input Range V_{CM} -7 +7 ٧ Input Current Figure 21 and Figure 23 ±3.25 mV I_{IA} , I_{IB} Input Current with Termination Figure 24 and Figure 25 I_{IA} , I_{IB} ±60.75 mΑ $-10V \le V_{CM} \le +10V$ Receiver Input Impedance R_{IN} 4 15 $k\Omega$ Receiver Sensitivity V_{TH} ±0.2 ٧

 $V_{CM} = 0 V$

15

mV

 ΔV_{TH}

PARAMETERS	SYMBOL	TEST CONDITIONS	Min	ТҮР	MAX	Unit
V.35 DRIVERS (ALL VALUES MEASURE	D WITH TERM _	_OFF = '0')				
Test Terminated Voltage	V _T	Figure 26	±0.44		±0.66	V
Offset	V _{OS}	Figure 26			±0.6	V
Output Overshoot		Figure 26, V _{ST} = Steady State Voltage	-0.2V _{ST}		+0.2V _{ST}	V
Source Impedance		Figure 29 $Z_S = V_2 / V_1 \times 50\Omega$	50		150	Ω
Short Circuit Impedance		Figure 28	135		165	Ω
V.35 RECEIVERS (ALL VALUES MEASU	RED WITH TER	M_OFF = '0')		±100	±200	mV
Source Impedance		Figure 30 $Z_S = V_2 / V_1 \times 50\Omega$	90		110	Ω
		Figure 31	135		165	Ω
Short-Circuit Impedance						
Short-Circuit Impedance TRANSCEIVER LEAKAGE CURRENT	'					
·		Drivers disabled, Figure 32		500		μA

2

ms

Charge Pump Rise Time

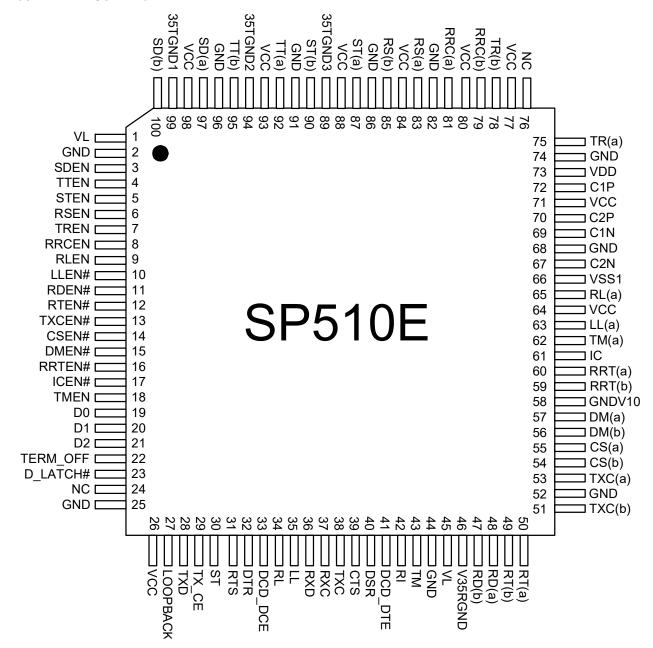
V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F;	I _{AMB} = I _{MIN} to	1 _{MAX} , uniess noted. Typical va	lues are a	t I _{AMB} = -	-25°C.	
PARAMETERS	SYMBOL	TEST CONDITIONS	Min	ТҮР	Max	Unit
V.28 / RS-232 DRIVER						
Maximum Transmission Rate		Figure 7	250			kbps
Driver Propagation Delay	t _{DPHL} , t _{DPLH}		0.5	1	5	μs
Driver Transition Time		+3V to -3V, Figure 7	0.2		1.5	μs
Instantaneous Slew Rate		+3V to -3V, Figure 4	4		30	V/µs
Driver Skew		t _{DPHL} - t _{DPLH} at zero crossing		100	800	ns
Driver Channel to Channel Skew				20		ns
Driver Output Enable Time Tri-state to Output Low	t _{DZL}	C _L = 100 pF, S1 closed Figure 34 and Figure 40			2	μs
Driver Output Enable Time Tri-state to Output High	t _{DZH}	C _L = 100 pF, S2 closed Figure 34 and Figure 40			2	μs
Driver Output Disable Time Output Low to Tri-state	t _{DLZ}	C _L = 15 pF, S1 closed Figure 34 and Figure 40			2	μs
Driver Output Disable Time Output High to Tri-state	t _{DHZ}	C _L = 15 pF, S2 closed Figure 34 and Figure 40			2	μs
V.28 / RS-232 Receiver						
Receiver Propagation Delay	t _{PHL} , t _{PLH}	R_IN to R_OUT, C _L = 15 pF	50	100	500	ns
Receiver Skew		t _{PHL} - t _{PLH} at 1.5V		50		ns
Receiver Channel to Channel Skew				20		ns
Receiver Output Rise / Fall Time	t _R , t _F	C _L = 15 pF		15		ns
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, S1 closed Figure 35 and Figure 40			2	μs
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, S2 closed Figure 35 and Figure 40			2	μs
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, S1 closed Figure 35 and Figure 40			2	μs
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, S2 closed Figure 35 and Figure 40			2	μs
O		0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				<u> </u>

Shutdown to operational

EV. 1.0.2 ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVE

TIMING CHARACTERISTICS V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F;	T _{AMB} = T _{MIN} to	T _{MΔX} , unless noted. Typical v	alues are a	t Τ _{ΔΜR} = +	-25°C.	
PARAMETERS	SYMBOL	Test Conditions	Min	ТҮР	Max	Unit
V.10 / RS-423 DRIVER						
Maximum Transmission Rate			250			kbps
Driver Propagation Delay	t _{DPHL} , t _{DPLH}		30	150	500	ns
Driver Rise / Fall Time	t _{DR} , t _{DF}	10% to 90%, Figure 14			500	ns
Driver Skew		t _{DPHL} - t _{DPLH} at zero crossing			100	ns
Driver Channel to Channel Skew				5		ns
Driver Output Enable Time Tri-state to Output Low	t _{DZL}	C _L = 100 pF, S1 closed Figure 34 and Figure 40			2	μs
Driver Output Enable Time Tri-state to Output High	t _{DZH}	C _L = 100 pF, S2 closed Figure 34 and Figure 40			2	μs
Driver Output Disable Time Output Low to Tri-state	t _{DLZ}	C _L = 15 pF, S1 closed Figure 34 and Figure 40			2	μs
Driver Output Disable Time Output High to Tri-state	t _{DHZ}	C _L = 15 pF, S2 closed Figure 34 and Figure 40			2	μs
V.10 / RS-423 RECEIVER	,					
Receiver Propagation Delay	t _{PHL} , t _{PLH}			100	500	ns
Receiver Output Rise / Fall Time	t _R , t _F	C _L = 15 pF		15		ns
Receiver Skew		t _{PHL} - t _{PLH} at 1.5V		5		ns
Receiver Channel to Channel Skew				5		ns
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, S1 closed Figure 35 and Figure 40			2	μs
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, S2 closed Figure 35 and Figure 40			2	μs
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, S1 closed Figure 35 and Figure 40			2	μs
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, S2 closed Figure 35 and Figure 40			2	μs

TIMING CHARACTERISTICS V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C. **PARAMETERS** SYMBOL **TEST CONDITIONS** MIN TYP Max UNIT HIGH SPEED V.11 / RS-422 (DRIVERS 1, 2 & 3) Maximum Bit Rate 52 Mbps 10-90% Driver Rise and Fall Time t_{DR}, t_{DF} 6 ns Figure 22 and Figure 36 $C_1 = 50 pF$ **Driver Propagation Delay Time** t_{DPHL}, t_{DPLH} 20 50 ns Figure 33 and Figure 36 $|t_{DPHL} - t_{DPLH}| C_L = 50 pF$ **Driver Skew** 3.8 Figure 33 and Figure 36 Driver Channel to Channel Skew 2 ns C_L = 100 pF, S1 closed **Driver Output Enable Time** t_{DZL} 100 ns Tri-state to Output Low Figure 34 and Figure 37 C_L = 100 pF, S2 closed **Driver Output Enable Time** 100 ns t_{DZH} Tri-state to Output High Figure 34 and Figure 37 **Driver Output Disable Time** $C_1 = 15 pF, S1 closed$ 100 t_{DLZ} ns Output Low to Tri-state Figure 34 and Figure 37 C_I = 15 pF, S2 closed **Driver Output Disable Time** 100 ns t_{DHZ} Output High to Tri-state Figure 34 and Figure 37 HIGH SPEED V.11 / RS-422 (RECEIVERS 1, 2 & 3) $C_{L} = 50 \text{ pF}$ Receiver Output Rise / Fall Time t_R, t_F 6 ns $C_1 = 50 \text{ pF}$ Receiver Propagation Delay t_{PHL}, t_{PLH} 20 50 ns Figure 33 and Figure 38 $|t_{PHL} - t_{PLH}|$ $C_L = 50 pF$ Receiver Skew 3.8 ns Figure 33 and Figure 38 Receiver Channel to Channel Skew 2 ns C_I = 100 pF, S1 closed Receiver Output Enable Time t_{ZL} 100 ns Tri-state to Output Low Figure 35 and Figure 39 C_I = 100 pF, S2 closed Receiver Output Enable Time 100 t_{ZH} ns Tri-state to Output High Figure 35 and Figure 39 $C_1 = 15 pF, S1 closed$ Receiver Output Disable Time 100 t_{LZ} ns Output Low to Tri-state Figure 35 and Figure 39 Receiver Output Disable Time C_L = 15 pF, S2 closed t_{HZ} 100 ns Output High to Tri-state Figure 35 and Figure 39


PARAMETERS	SYMBOL	TEST CONDITIONS	Min	Түр	Max	Unit
V.11 / RS-422 Handshake Signals (DRIVERS 4, 5 8	k 6)				
Maximum Bit Rate		Figure 33	10			Mbps
Driver Rise and Fall Time	t _{DR} , t _{DF}	Figure 22 and Figure 36		2	10	ns
Driver Propagation Delay Time	t _{DPHL} , t _{DPLH}	C _L = 50 pF Figure 33 and Figure 36		20	50	ns
Driver Skew		t _{DPHL} - t _{DPLH} , C _L = 50 pF Figure 33 and Figure 36			10	ns
Driver Channel to Channel Skew				2		ns
Driver Output Enable Time Tri-state to Output Low	t _{DZL}	C _L = 100 pF, S1 closed Figure 34 and Figure 37			100	ns
Driver Output Enable Time Tri-state to Output High	t _{DZH}	C _L = 100 pF, S2 closed Figure 34 and Figure 37			100	ns
Driver Output Disable Time Output Low to Tri-state	t _{DLZ}	C _L = 15 pF, S1 closed Figure 34 and Figure 37			100	ns
Driver Output Disable Time Output High to Tri-state	t _{DHZ}	C _L = 15 pF, S2 closed Figure 34 and Figure 37			100	ns
V.11 / RS-422 Handshake Signals (RECEIVERS 4,	5 & 6)		-		1
Receiver Output Rise / Fall Time	t_R , t_F	C _L = 50 pF			20	ns
Receiver Propagation Delay	t _{PHL} , t _{PLH}	C _L = 50 pF Figure 33 and Figure 38		20	50	ns
Receiver Skew		t _{PHL} - t _{PLH} C _L = 50 pF Figure 33 and Figure 38			10	ns
Receiver Channel to Channel Skew				2		ns
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, S1 closed Figure 35 and Figure 39			100	ns
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, S2 closed Figure 35 and Figure 39			100	ns
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, S1 closed Figure 35 and Figure 39			100	ns
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, S2 closed Figure 35 and Figure 39			100	ns

TIMING CHARACTERISTICS V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C. **PARAMETERS** SYMBOL **TEST CONDITIONS** MIN TYP Max UNIT V.35 (DRIVERS 1, 2 & 3) Maximum Bit Rate f_{MAX} = 20 MHz, Figure 33 Mbps 40 Driver Rise and Fall Time Figure 29 10 t_{DR}, t_{DF} ns $C_1 = 50 pF$ **Driver Propagation Delay Time** t_{DPHL}, t_{DPLH} 25 50 ns Figure 33 and Figure 36 $|t_{DPHL} - t_{DPLH}| C_L = 50 pF$ **Driver Skew** 2 5 ns Figure 33 and Figure 36 Driver Channel to Channel Skew 2 ns C_I = 100 pF, S1 closed **Driver Output Enable Time** 200 t_{DZL} ns Tri-state to Output Low Figure 34 and Figure 37 C_I = 100 pF, S2 closed **Driver Output Enable Time** 200 t_{DZH} ns Tri-state to Output High Figure 34 and Figure 37 C_I = 15 pF, S1 closed **Driver Output Disable Time** t_{DLZ} 200 ns Output Low to Tri-state Figure 34 and Figure 37 C_I = 15 pF, S2 closed **Driver Output Disable Time** 200 t_{DHZ} Output High to Tri-state Figure 34 and Figure 37 V.35 (RECEIVERS 1, 2 & 3) $C_1 = 50 pF$ Receiver Propagation Delay t_{PHL}, t_{PLH} 30 50 ns Figure 33 and Figure 38 $|t_{PHL} - t_{PLH}| C_L = 50 pF$ Receiver Skew 5 ns Figure 33 and Figure 38 2 Receiver Channel to Channel Skew ns C_L = 100 pF, S1 closed Receiver Output Enable Time 200 t_{ZL} ns Tri-state to Output Low Figure 35 and Figure 39 C_L = 100 pF, S2 closed Receiver Output Enable Time 200 t_{ZH} Tri-state to Output High Figure 35 and Figure 39 C_I = 15 pF, S1 closed Receiver Output Disable Time 200 t_{LZ} ns Output Low to Tri-state Figure 35 and Figure 39 C_I = 15 pF, S2 closed Receiver Output Disable Time 200 t_{HZ} ns Output High to Tri-state Figure 35 and Figure 39

FIGURE 1. PIN OUT DIAGRAM

TABLE 3: PIN DESCRIPTIONS BY FUNCTION

PIN NAME	PIN NUMBER	I/O		DESCRIPTION				
DIFFERENTIAL DRIVERS								
TxD	28	I	TTL	TxD Driver Input				
SD(b) / SD(a)	100, 97	0	TTL	Differential Transmit data non-inverting (b) and inverting (a) outputs				
V35TGND1	99	I		SD Termination Reference				
SDEN	3	I	TTL	TxD Driver Enable				
TxCE	29	ļ	TTL	TxCE Driver Input				
TT(b) / TT(a)	95, 92	0	TTL	Differential TxCE non-inverting (b) and inverting (a) outputs				
V35TGND2	94	I		TT Termination Reference				
TTEN	4	Į.	TTL	TxCE Driver Enable				
ST	30	I	TTL	ST Driver Input				
ST(b) / ST(a)	90, 87	0	TTL	Differential ST non-inverting (b) and inverting (a) outputs				
V35TGND3	89	I		ST Termination Reference				
STEN	5	I	TTL	ST Driver Enable				
RTS	31	I	TTL	RTS Driver Input				
RS(b) / RS(a)	85, 83	0	TTL	Differential RTS non-inverting (b) and inverting (a) outputs				
RSEN	6	I	TTL	RTS Driver Enable				
DTR	32	I	TTL	DTR Driver Input				
TR(b) / TR(a)	78, 75	0	TTL	Differential DTR non-inverting (b) and inverting (a) outputs				
TREN	7	I	TTL	DTR Driver Enable				
DCD_DCE	33	I	TTL	DCD_DCE Driver Input				
RRC(b) / RRC(a)	79, 81	0	TTL	Differential DCD non-inverting (b) and inverting (a) outputs				
RRCEN	8	I	TTL	DCD Driver Enable				
SINGLE ENDED DRIV	/ERS							
RL	34	I	TTL	RL Driver Input				
RL(a)	65	0	TTL	RL Driver Output				
RLEN	9	I	TTL	RL Driver Enable				
LL	35	I	TTL	LL Driver Input				
LL(a)	63	0	TTL	LL Driver Output				
LLEN#	10	I	TTL	LL Driver Enable, active low				

ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVER

PIN NAME	PIN NUMBER	I/O		DESCRIPTION					
DIFFERENTIAL RECEIVERS									
RxD	36	0	TTL	RxD Receiver Output					
RD(b) / RD(a)	47, 48	I	TTL	Differential RXD non-inverting (b) and inverting (a) inputs					
RDEN#	11	I	TTL	RxD Receiver Enable, active low					
RxC	37	0	TTL	RxC Receiver Output					
RT(b) / RT(a)	49, 50	I	TTL	Differential RXC non-inverting (b) and inverting (a) inputs					
RTEN#	12	Į.	TTL	RxC Receiver Enable, active low					
TxC	38	0	TTL	TxC Receiver Output					
TxC(b) / TxC(a)	51, 53	I	TTL	Differential TxC non-inverting (b) and inverting (a) inputs					
TxCEN#	13	Į.	TTL	TxC Receiver Enable, active low					
CTS	39	0	TTL	CTS Receiver Output					
CS(b) / CS(a)	54, 55	I	TTL	Differential CTS non-inverting (b) and inverting (a) inputs					
CSEN#	14	Į.	TTL	CTS Receiver Enable, active low					
DSR	40	0	TTL	DSR Receiver Output					
DM(b) / DM(a)	56, 57	I	TTL	Differential DSR non-inverting (b) and inverting (a) inputs					
DMEN#	15	I	TTL	DSR Receiver Enable, active low					
DCD_DTE	41	0	TTL	DCD_DTE Receiver Output					
RRT(b) / RRT(a)	59, 60	I	TTL	Differential DCD_DTE non-inverting (b) and inverting (a) inputs					
RRTEN#	16	I	TTL	DCD_DTE Receiver Enable, active low					
SINGLE ENDED REC	EIVERS								
IC	61	I	TTL	RI Receiver Input					
RI	42	0	TTL	RI Receiver Output					
ICEN#	17	I	TTL	RI Receiver Enable, active low					
TM(a)	62	I	TTL	TM Receiver Input					
TM	43	0	TTL	TM Receiver Output					
TMEN	18	I	TTL	TM Receiver Enable					

PIN NAME	PIN NUMBER	I/O		DESCRIPTION
PROTOCOL & MODE	SELECTION PINS			
	1			T
D2, D1, D0	21, 20, 19	I	TTL	Mode Select - Refer to Table 5 and Table 6
CHARGE PUMP PINS	s			
C1P, C1N	72, 69	I		Charge Pump Capacitor 1 +/- inputs. Connect a 1 µF capacitor between C1P and C1N pins.
C2P, C2N	70, 67	I		Charge Pump Capacitor 2 +/- inputs. Connect a 1 µF capacitor between C2P and C2N pins.
VSS1	66	I		-2xV _{CC} Charge Pump
VDD	73	I		2xV _{CC} Charge Pump
GENERAL CONTROL	27	I	TTL	Loopback mode enable, active low
D_LATCH#	23	1		Decoder Latch, active low
TERM_OFF	22	I		Termination disable
RESERVED PINS	,			
NC	24, 76			No Connect
Power and Groun	ND PINS			
VCC	26, 64, 71, 77, 80, 84, 88, 98	I		5V supply
VL	1, 45	I		Logic I/O Power Supply Input
GND	2, 25, 44, 52, 68, 74, 82, 86, 91, 96	I		Ground
GNDV10	58	1		V.10 Receiver Ground Reference
V35RGND	46	0		Receiver Termination Reference

Note: Pin type: I = Input, O = Output, I/O = Input/output.

TABLE 4: PIN DESCRIPTIONS BY PIN NUMBER

PIN [PIN DESCRIPTIONS BY PIN NUMBER									
1	VL	Logic I/O Power Supply Input	32	DTR	DTR Driver TTL Input					
2	GND	Ground	33	DCD_DCE	DCD_DCE Driver TTL Input					
3	SDEN	TxD Driver Enable Input	34	RL	RL Driver TTL Input					
4	TTEN	TxCE Driver Enable Input	35	LL	LL Driver TTL Input					
5	STEN	ST Driver Enable Input	36	RxD	RxD Receiver TTL Output					
6	RSEN	RTS Driver Enable Input	37	RxC	RxC Receiver TTL Output					
7	TREN	DTR Driver Enable Input	38	TxC	TxC Receiver TTL Output					
8	RRCEN	DCD Driver Enable Input	39	CTS	CTS Receiver TTL Output					
9	RLEN	RL Driver Enable Input	40	DSR	DSR Receiver TTL Output					
10	LLEN#	LL Driver Enable Input	41	DCD_DTE	DCD_DTE Receiver TTL Output					
11	RDEN#	RxD Receiver Enable Input	42	RI	RI Receiver TTL Output					
12	RTEN#	RxC Receiver Enable Input	43	TM	TM Receiver TTL Output					
13	TxCEN#	TxC Receiver Enable Input	44	GND	Ground					
14	CSEN#	CTS Receiver Enable Input	45	VL	Logic I/O Power Supply Input					
15	DMEN#	DSR Receiver Enable Input	46	V35RGND	Receiver Termination Reference					
16	RRTEN#	DCD_DTE Receiver Enable Input	47	RD(b)	RXD Non-Inverting Input					
17	ICEN#	RI Receiver Enable Input	48	RD(a)	RXD Inverting Input					
18	TMEN	TM Receiver Enable Input	49	RT(b)	RxC Non-Inverting Input					
19	D0	Mode Select Input - Bit 0	50	RT(a)	RxC Inverting Input					
20	D1	Mode Select Input - Bit 1	51	TxC(b)	TxC Non-Inverting Input					
21	D2	Mode Select Input - Bit 2	52	GND	Ground					
22	TERM_OFF	Termination Disable Input	53	TxC(a)	TxC Inverting Input					
23	D_LATCH#	Decoder Latch Input	54	CS(b)	CTS Non-Inverting Input					
24	N/C	No Connect	55	CS(a)	CTS Inverting Input					
25	GND	Ground	56	DM(b)	DSR Non-Inverting Input					
26	VCC	5V Power Supply Input	57	DM(a)	DSR Inverting Input					
27	LOOP- BACK#	Loopback Mode Enable Input	58	GNDV10	V.10 Rx Ground Reference					
28	TxD	TxD Driver TTL Input	59	RRT(b)	DCD_DTE Non-Inverting Input					
29	TxCE	TxCE Driver TTL Input	60	RRT(a)	DCD_DTE Inverting Input					
30	ST	ST Driver TTL Input	61	IC	RI Receiver Input					
31	RTS	RTS Driver TTL Input	62	TM(a)	TM Receiver Input					

PIN [PIN DESCRIPTIONS BY PIN NUMBER					
63	LL(a)	LL Driver Output	82	GND	Ground	
64	VCC	5V Power Supply Input	83	RS(a)	RTS Inverting Output	
65	RL(a)	RL Driver Output	84	VCC	5V Power Supply Input	
66	VSS1	-2 x V _{CC} Charge Pump	85	RS(b)	RTS Non-Inverting Output	
67	C2N	Charge Pump Capacitor	86	GND	Ground	
68	GND	Ground	87	ST(a)	ST Inverting Output	
69	C1N	Charge Pump Capacitor	88	VCC	5V Power Supply Input	
70	C2P	Charge Pump Capacitor	89	V35TGND3	ST Termination Reference	
71	VCC	5V Power Supply Input	90	ST(b)	ST Non-Inverting Output	
72	C1P	Charge Pump Capacitor	91	GND	Ground	
73	VDD	2 x V _{CC} Charge Pump	92	TT(a)	TxCE Inverting Output	
74	GND	Ground	93	VCC	5V Power Supply Input	
75	TR(a)	DTR Inverting Output	94	V35TGND2	TT Termination Reference	
76	NC	No Connect	95	TT(b)	TxCE Non-Inverting Output	
77	VCC	5V Power Supply Input	96	GND	Ground	
78	TR(b)	DTR Non-Inverting Output	97	SD(a)	TxD Inverting Output	
79	RRC(b)	DCD Non-Inverting Output	98	VCC	5V Power Supply Input	
80	VCC	5V Power Supply Input	99	V35TGND1	SD Termination Reference	
81	RRC(a)	DCD Inverting Output	100	SD(b)	TxD Non-Inverting Output	

REV. 1.0.2

TABLE 5: DRIVER MODE SELECTION

DRIVER OUTPUT PIN	EIA-530A MODE	EIA-530 MODE	X.21 MODE (V.11)	V.35 Mode	RS-449 MODE (V.36)	RS-232 MODE (V.28)	SHUT- DOWN	Suggested Signal
MODE (D2, D1, D0)	001	010	011	100	101	110	111	
T ₁ OUT(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	TxD(a)
T ₁ OUT(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	TxD(b)
T ₂ OUT(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	TxCE(a)
T ₂ OUT(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	TxCE(b)
T ₃ OUT(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	TxC_DCE(a)
T ₃ OUT(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	TxC_DCE(b)
T ₄ OUT(a)	V.11	V.11	V.11	V.28	V.11	V.28	High-Z	RTS(a)
T ₄ OUT(b)	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z	RTS(b)
T ₅ OUT(a)	V.10	V.11	V.11	V.28	V.11	V.28	High-Z	DTR(a)
T ₅ OUT(b)	High-Z	V.11	V.11	High-Z	V.11	High-Z	High-Z	DTR(b)
T ₆ OUT(a)	V.11	V.11	V.11	V.28	V.11	V.28	High-Z	DCD_DCE(a)
T ₆ OUT(b)	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z	DCD_DCE(b)
T ₇ OUT(a)	V.10	V.10	High-Z	V.28	V.10	V.28	High-Z	RL
T ₈ OUT(a)	V.10	V.10	High-Z	V.28	V.10	V.28	High-Z	LL

TABLE 6: RECEIVER MODE SELECTION

RECEIVER INPUT PIN	EIA-530A MODE	EIA-530 Mode	X.21 MODE (V.11)	V.35 Mode	RS-449 Mode (V.36)	RS-232 MODE (V.28)	SHUT- DOWN	Suggested Signal
Mode (D2, D1, D0)	001	010	011	100	101	110	111	
R ₁ IN(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	RxD(a)
R ₁ IN(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	RxD(b)
R ₂ IN(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	RxCE(a)
R ₂ IN(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	RxCE(b)
R ₃ IN(a)	V.11	V.11	V.11	V.35	V.11	V.28	High-Z	TxC_DTE(a)
R ₃ IN(b)	V.11	V.11	V.11	V.35	V.11	High-Z	High-Z	TxC_DTE(b)
R ₄ IN(a)	V.11	V.11	V.11	V.28	V.11	V.28	High-Z	CTS(a)
R ₄ IN(b)	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z	CTS(b)
R ₅ IN(a)	V.10	V.11	V.11	V.28	V.11	V.28	High-Z	DSR(a)
R ₅ IN(b)	High-Z	V.11	V.11	High-Z	V.11	High-Z	High-Z	DSR(b)
R ₆ IN(a)	V.11	V.11	V.11	V.28	V.11	V.28	High-Z	DCD_DTE(a)
R ₆ IN(b)	V.11	V.11	V.11	High-Z	V.11	High-Z	High-Z	DCD_DTE(b)
R ₇ IN(a)	V.10	V.10	High-Z	V.28	V.10	V.28	High-Z	RI
R ₈ IN(a)	V.10	V.10	High-Z	V.28	V.10	V.28	High-Z	TM

REV. 1.0.2

TABLE 7: V.11 & V.35 DRIVERS

INP	UTS	OUTPUTS		
Tx_EN#	Tx_IN	Tx(A)	Тх(в)	
1	1	0	1	
1	0	1	0	

TABLE 8: V.28 DRIVERS

INP	UTS	Оитритѕ		
Tx_EN#	Tx_IN	TX(A)	TX(B)	
1	1	< -5V	> 30 kΩ	
1	0	> +5V	> 30 kΩ	

TABLE 9: V.10 DRIVERS

INP	UTS	Оитритѕ		
Tx_EN#	Tx_IN	Tx(A)	Тх(в)	
1	1	< -4V	> 30 kΩ	
1	0	> +4V	> 30 kΩ	

TABLE 10: V.11 & V.35 RECEIVERS

INPUTS	Оитритѕ	
Rx(a) - Rx(b)	RO	
≥ 200 mV	1	
≤ –200 mV	0	
Open / shorted	1	

TABLE 11: V.28 RECEIVERS

INPUTS	OUTPUTS	
Rx(a) - Rx(b)	RO	
≥ + 3V	0	
≤ -3V	1	
Open / ground	1	

TABLE 12: V.10 RECEIVERS

INPUTS	Оитритѕ	
Rx(a) - Rx(b)	RO	
≥ +0.3V	0	
≤ -0.3V	1	
Open / ground	1	

FIGURE 2. V.28 DRIVER OUTPUT OPEN CIRCUIT VOLTAGE

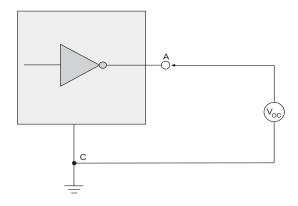


FIGURE 3. V.28 DRIVER OUTPUT LOADED VOLTAGE

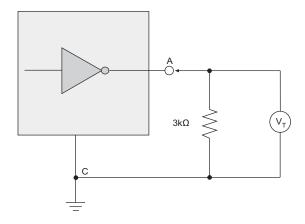


FIGURE 4. V.28 DRIVER OUTPUT SLEW RATE

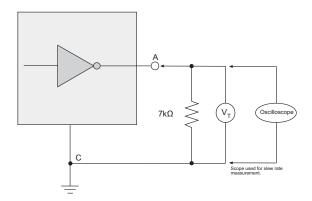


FIGURE 5. V.28 DRIVER OUTPUT SHORT CIRCUIT CURRENT

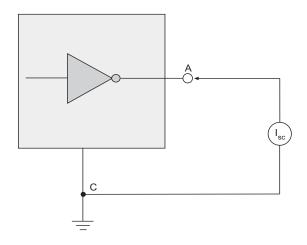


FIGURE 6. V.28 DRIVER OUTPUT POWER-OFF IMPEDANCE

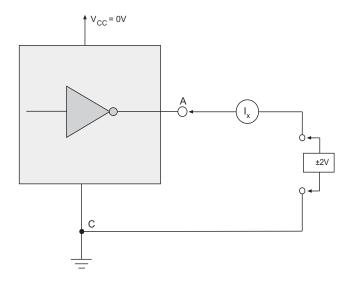
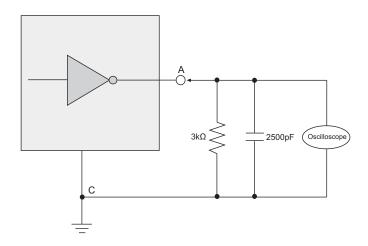



FIGURE 7. V.28 DRIVER OUTPUT RISE/FALL TIME

FIGURE 8. V.28 RECEIVER INPUT IMPEDANCE

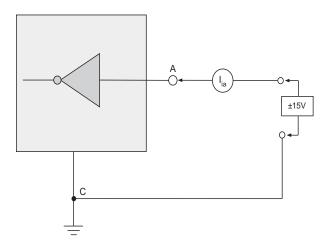


FIGURE 9. V.28 RECEIVER INPUT OPEN-CIRCUIT BIAS

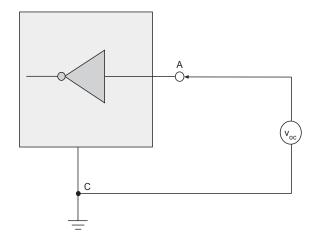


FIGURE 10. V.10 DRIVER OUTPUT OPEN-CIRCUIT VOLTAGE

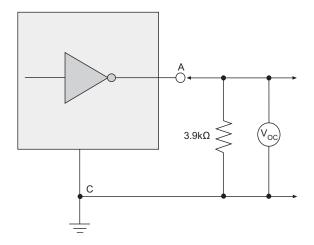


FIGURE 11. V.10 DRIVER OUTPUT TEST TERMINATED VOLTAGE

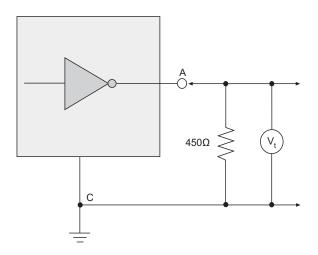


FIGURE 12. V.10 DRIVER OUTPUT SHORT-CIRCUIT CURRENT

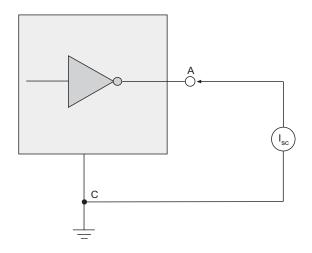
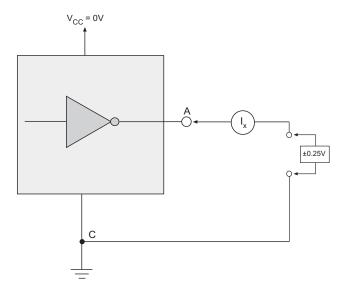



FIGURE 13. V.10 DRIVER OUTPUT POWER-OFF IMPEDANCE

FIGURE 14. V.10 DRIVER OUTPUT TRANSITION TIME

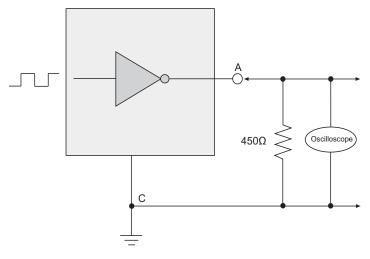


FIGURE 15. V.10 RECEIVER INPUT CURRENT

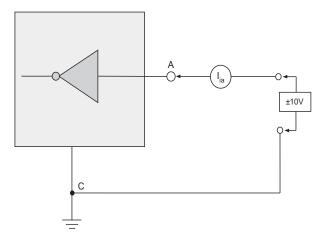


FIGURE 16. V.10 RECEIVER INPUT IV GRAPH

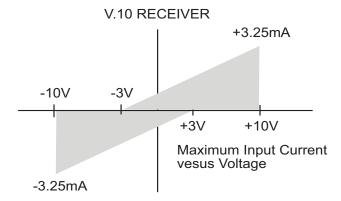


FIGURE 17. V.11 DRIVER OUTPUT TEST TERMINATED VOLTAGE

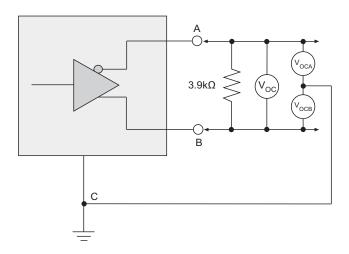
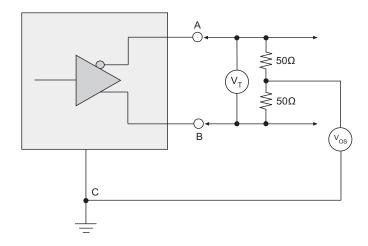
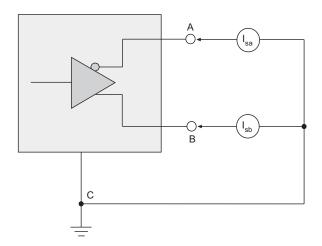
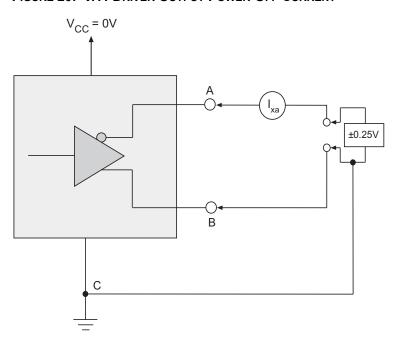
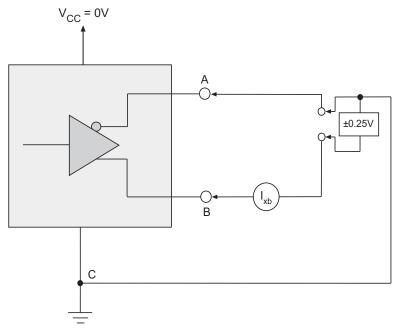
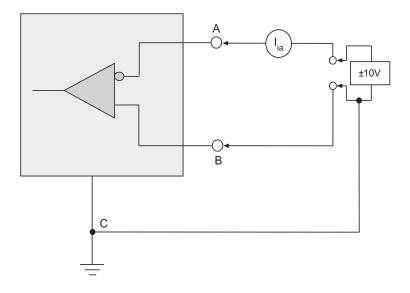


FIGURE 18. V.11 DRIVER OUTPUT TEST TERMINATED VOLTAGE


FIGURE 19. V.11 DRIVER OUTPUT SHORT-CIRCUIT CURRENT


FIGURE 20. V.11 DRIVER OUTPUT POWER-OFF CURRENT

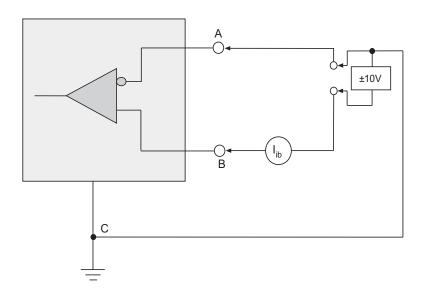
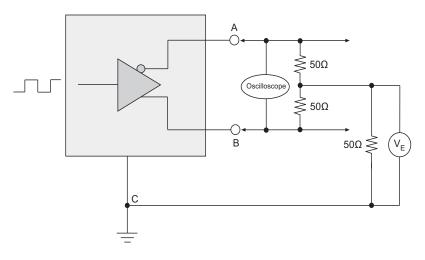
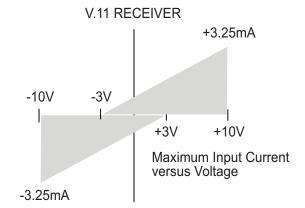
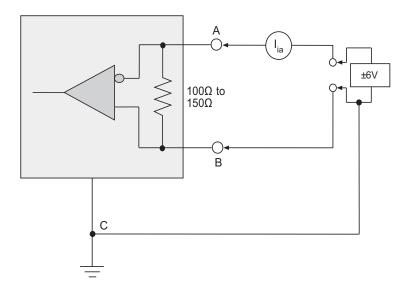


FIGURE 21. V.11 RECEIVER INPUT CURRENT

FIGURE 22. V.11 DRIVER OUTPUT RISE/FALL TIME

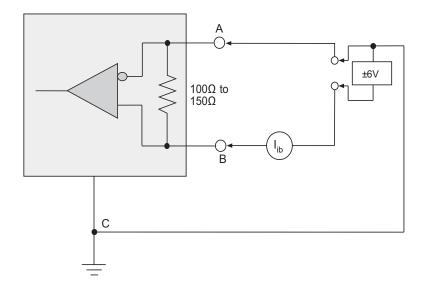

FIGURE 23. V.11 RECEIVER INPUT IV GRAPH

FIGURE 24. V.11 RECEIVER INPUT CURRENT WITH TERMINATION

FIGURE 25. V.11 RECEIVER INPUT IV GRAPH WITH TERMINATION

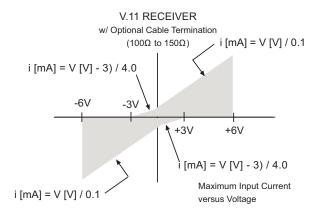


FIGURE 26. V.35 DRIVER OUTPUT TEST TERMINATED VOLTAGE

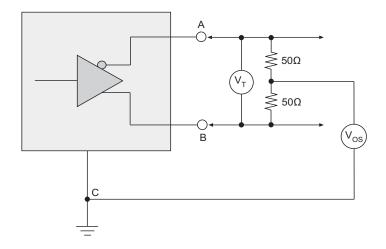


FIGURE 27. V.35 DRIVER OUTPUT SOURCE IMPEDANCE

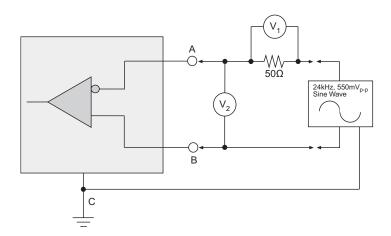


FIGURE 28. V.35 DRIVER OUTPUT SHORT-CIRCUIT IMPEDANCE

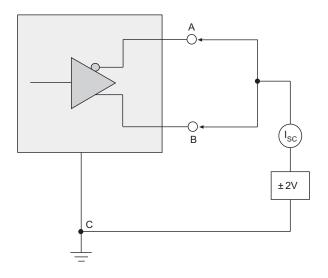


FIGURE 29. V.35 DRIVER OUTPUT RISE/FALL TIME

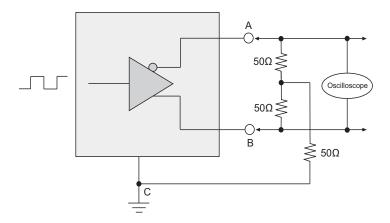
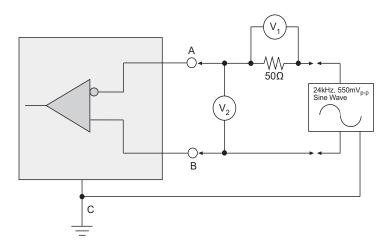
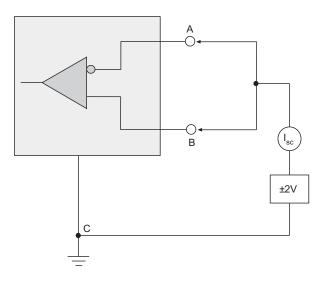
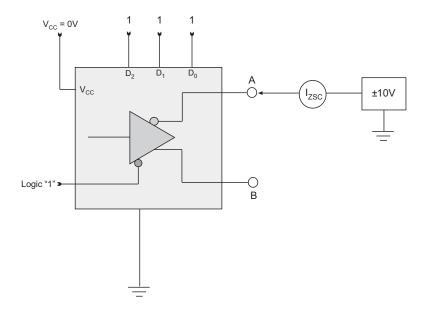
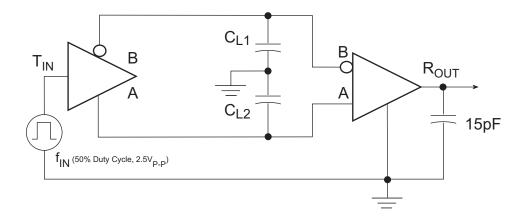



FIGURE 30. V.35 RECEIVER INPUT SOURCE IMPEDANCE

FIGURE 31. V.35 RECEIVER INPUT SHORT-CIRCUIT IMPEDANCE


FIGURE 32. DRIVER OUTPUT CURRENT LEAKAGE TEST

Any one of the three conditions for disabling the driver.

FIGURE 33. DRIVER / RECEIVER TIMING TEST CIRCUIT

FIGURE 34. DRIVER TIMING TEST LOAD CIRCUIT

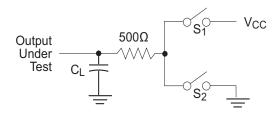
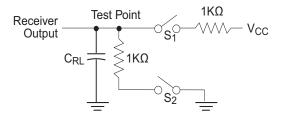
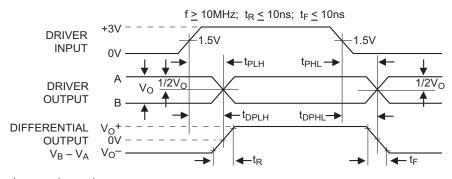
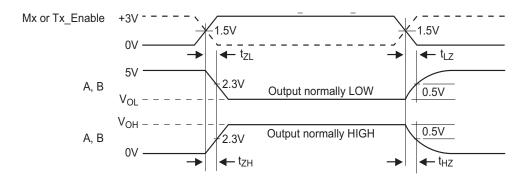
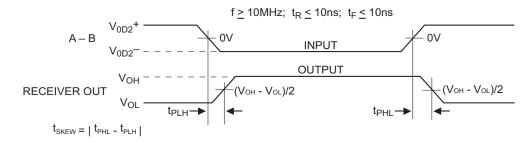


FIGURE 35. RECEIVER TIMING TEST LOAD CIRCUIT


FIGURE 36. DRIVER PROPAGATING DELAYS


t_{SKEW} = | t_{DPLH} - t_{DPHL} |

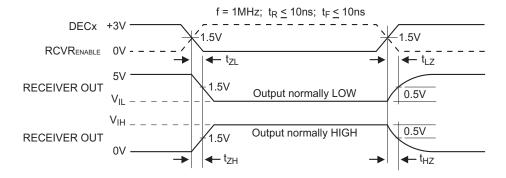
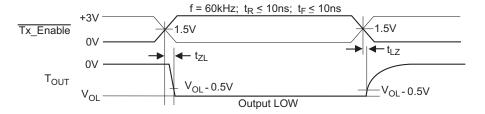
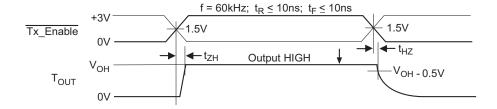

FIGURE 37. DRIVER ENABLE AND DISABLE TIMES

FIGURE 38. RECEIVER PROPAGATION DELAYS




FIGURE 39. RECEIVER ENABLE AND DISABLE TIMES

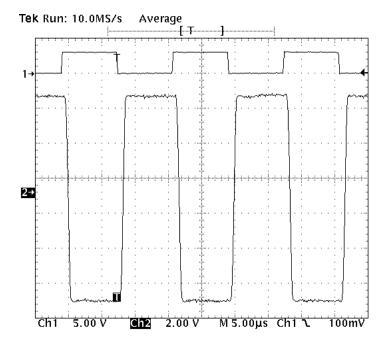


FIGURE 40. V.28 (RS-232) AND V.10 (RS-423) DRIVER ENABLE AND DISABLE TIMES

FIGURE 41. TYPICAL V.28 DRIVER OUTPUT WAVEFORM

FIGURE 42. TYPICAL V.10 DRIVER OUTPUT WAVEFORM

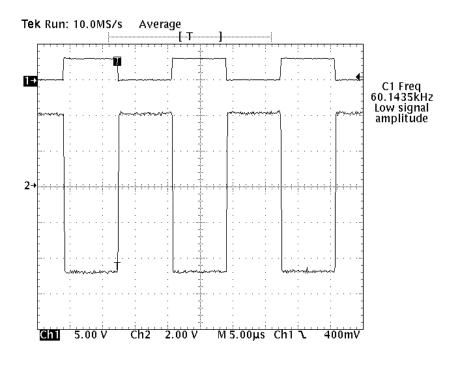
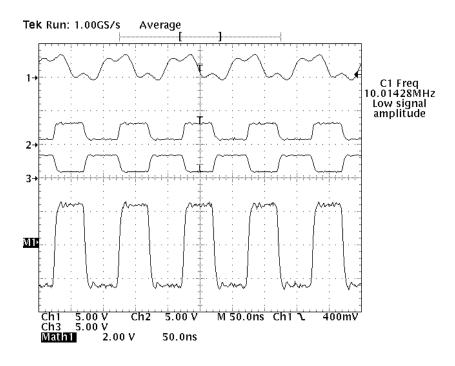
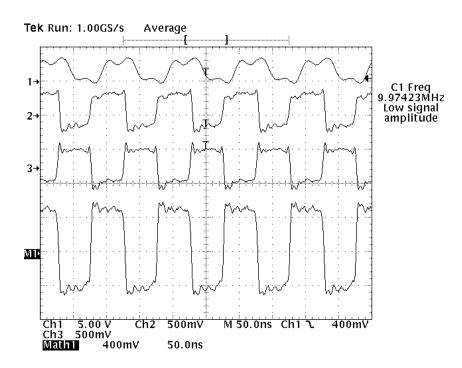




FIGURE 43. TYPICAL V.11 DRIVER OUTPUT WAVEFORM

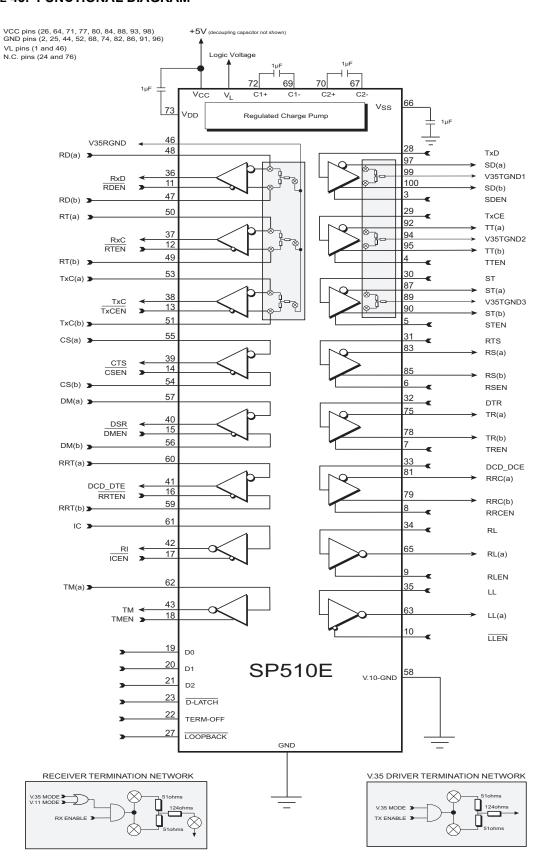


FIGURE 44. TYPICAL V.35 DRIVER OUTPUT WAVEFORM

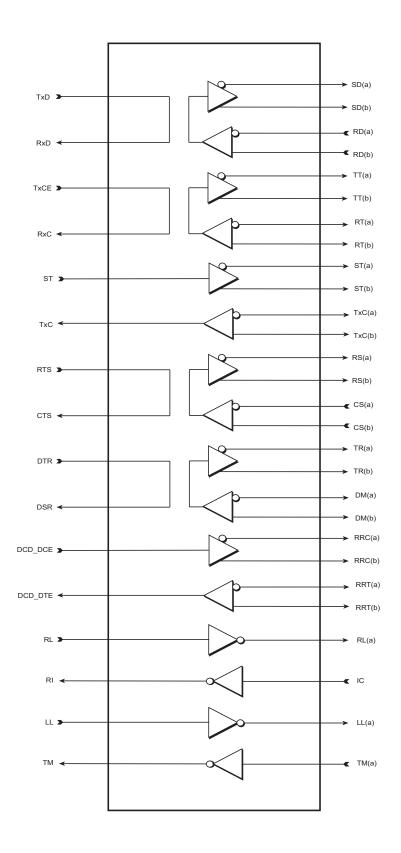
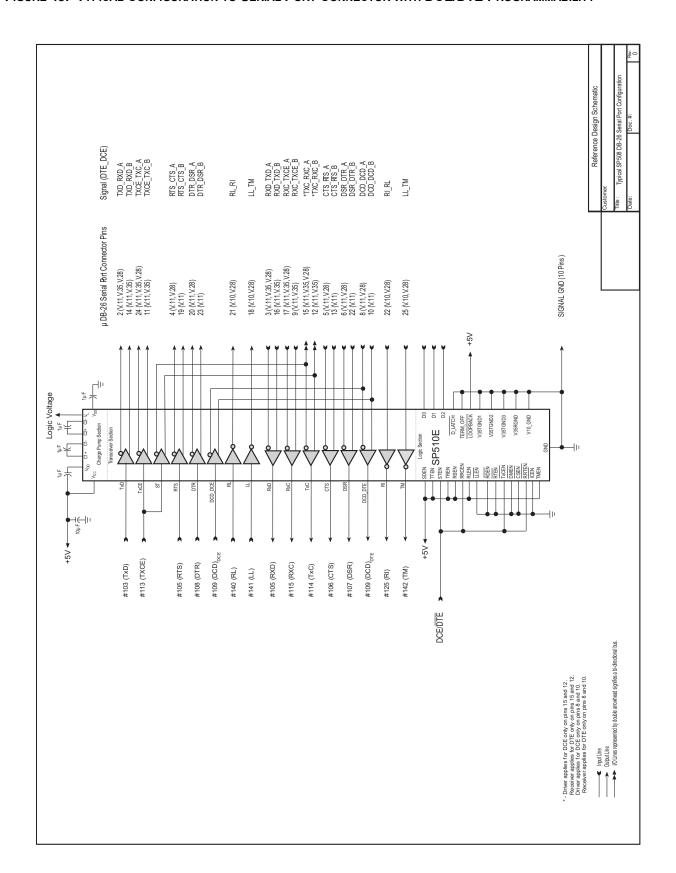


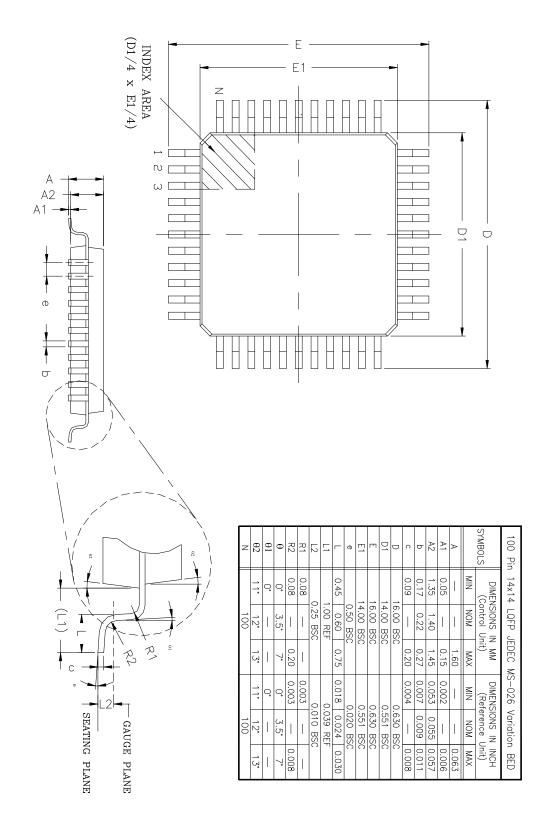
FIGURE 45. FUNCTIONAL DIAGRAM


FIGURE 46. SP510E LOOPBACK PATH

FIG#RE

FIGURE 48. TYPICAL CONFIGURATION TO SERIAL PORT CONNECTOR WITH DCE/DTE PROGRAMMABILITY

REV. 1.0.2


Thermal Considerations

High speed devices like the SP510E dissipate heat during normal operation. Actual power dissipation is a function of the switching frequency and loading. For maximum system performance and reliability designers should ensure sufficient air flow. Other commonly used methods for managing heat include heat sinks for higher powered devices, forced air flow (fans) and lower density board stuffing.

PCB Design

The use of multi layer printed circuit boards is recommended to provide both a better ground plane and a thermal path for heat dissipation. If possible, the ground plane should face the bottom of the package to form the thermal conduction plane. Two-sided printed circuit boards may be used where board dimensions and package count are small, but multi-layer boards allow for improved signal routing as well as improved signal integrity. A multi-layer board allows microstrip line techniques for high speed signal interconnections when the high speed signal lines on the inner layers.

ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVER

REVISION HISTORY

DATE	REVISION	DESCRIPTION
July 2012	1.0.0	Production Release
February 2014	1.0.1	Updated Exar logo and package drawing, corrected typo in tables 5 & 6.
January 2020	1.0.2	Update to MaxLinear logo. Update ordering information.

MaxLinear, Inc. 5966 La Place Court, Suite 100 Carlsbad, CA 92008 760.692.0711 p. 760.444.8598 f. www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.

© 2012 - 2020 MaxLinear, Inc. All rights reserved.