

600V HIGH- AND LOW-SIDE GATE DRIVER

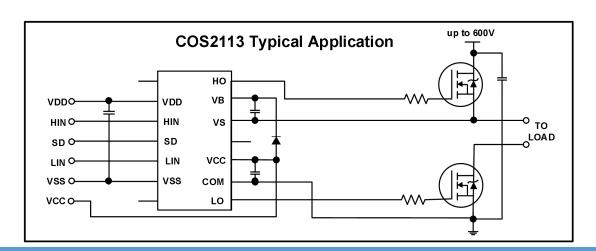
Features

- High side fully operational to +600V
- Floating channel designed for bootstrap operation
- Output source/sink current capability 2.5A
- Common-Mode dV/dt noise canceling circuit
- Gate drive supply range from 10V to 20V
- Under-voltage lockout for both channels
- 3.3V logic compatible
- Separate logic supply range from 3.3V to 20V
- Logic and power ground ±5V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Outputs in phase with inputs
- Matched propagation delay for both channels

Rev1.0

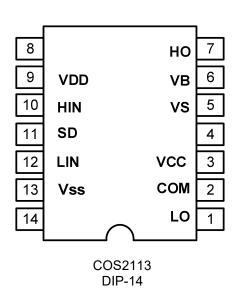
ReV1.0

Copyright@2022 Cosine Nanoelectronics Inc. All rights reserved.


The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes no reliability for inaccuracies and omissions. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party.

General Description

The COS2113 is a high voltage and high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600V. The Logic inputs of COS2113 is compatible with standard CMOS or TTL output, down to 3.3V logic. COS2113 is available in Green wide SOP16, and DIP14 Packages.


Applications

- Motor Drivers
- Full/Half Bridge Converters
- Two Switch forward Converter

1. Pin Configuration and Functions

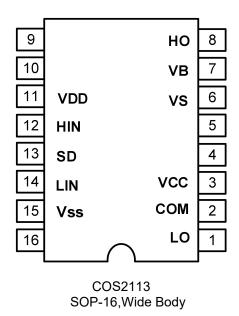


Figure 1. Pin Diagram

Pin Description

Name	Pin No. (DIP14)	Pin No. (SOP16)	Description		
VDD	9	11	Logic supply		
HIN	10	12	Logic input for high-side gate driver output (HO), in phase		
SD	11	13	Logic input for shutdown		
LIN	12	14	Logic input for low-side gate driver output (LO), in phase		
VSS	13	15	Logic ground		
VB	6	7	High-side floating supply		
НО	7	8	High-side gate drive output		
VS	5	6	High-side floating supply return		
VCC	3	3	Low-side supply		
LO	1	1	Low-side gate drive output		
СОМ	2	2	Low-side return		

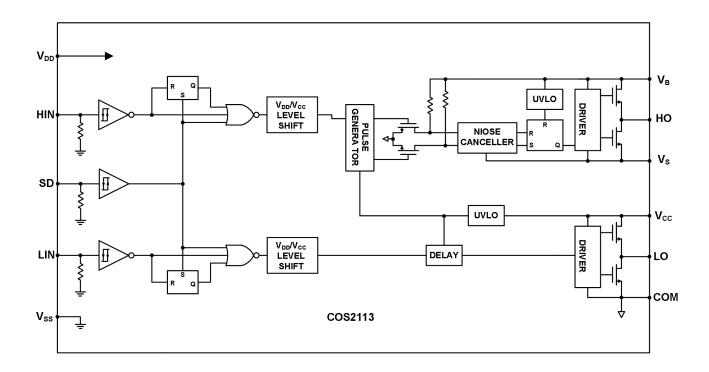


Figure 2. Functional Block Diagram

2. Product Specification

2.1 Absolute Maximum Ratings (1)

Parameter	Symbol	Min	Max	Unit
High-side floating supply voltage	VB	-0.3	620	V
High-side floating supply offset voltage	VS	VB - 20	VB +0.3	V
High-side floating output voltage	VHO	VS - 0.3	VB + 0.3	V
Low-side fixed supply voltage	VCC	-0.3	20	V
Low-side output voltage	VLO	-0.3	VCC + 0.3	V
Logic supply voltage	VDD	-0.3	VSS +20	V
Logic supply offset voltage	VSS	VCC-20	VSS +0.3	V
Logic input voltage (HIN, LIN, SD)	VIN	VSS-0.3	VDD +0.3	V
Allowable offset supply voltage transient	dVs/dt	-	50	V/ns
Junction temperature	TJ	-	150	°C
Storage temperature	Ts	- 55	150	°C
Lead temperature (soldering, 10 seconds)	TL	-	300	°C

(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

2.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	100 (WSOP16) 75 (DIP14)	°C/W

2.3 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
High-side floating supply voltage	VB	VS+10	VS+20	
Low-side fixed supply voltage	VCC	10	20	
Logic supply voltage	VDD	VSS+3	VSS+20] V
Logic supply offset voltage	VSS	-5	5	
Logic input voltage (HIN, LIN, SD)	VIN	VSS	VDD	
Operation temperature	ТА	-40	125	°C

2.4 Electrical Characteristics

VBIAS (VCC, VBS, VDD) = 15 V, T_A = 25 °C , C_L =1000pF and VSS = COM, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
INPUT							
Input signal high threshold	VIH		2.5	-		V	
Input signal low threshold	VIL			-	0.8	V	
Logic "1" input bias current	I _{IN+}	V _{IN} = 5V		10	20	μΑ	
Logic "0" input bias current	I _{IN-}	V _{IN} = 0 V		-	2.0	μΑ	
OUTPUT							
High level output voltage, V _{BIAS} - V _O	V _{OH}	I _O =20mA		-	1.4	V	
Low level output voltage	V _{OL}	10-2011/4		-	0.15	V	
Output high short circuit pulsed current	I _{O+}	V _O =0 V, V _{IN} = VDD PW≤10 µs	2.0	2.5	-	А	
Output low short circuit pulsed current	I _{O-}	V _O =15 V, V _{IN} = 0 PW≤10 µs	2.0	2.5	-	А	

POWER SUPPLY							
Quiescent VBS supply current	I _{QBS}		-	45	100	μΑ	
Quiescent VCC supply current	I _{QCC}	VIN = 0 V or VDD	-	500	700	μA	
Quiescent VDD supply current	I_{QDD}		-	-	150	μΑ	
Offset supply leakage current	I _{LK}	VB=VS=600V	-	-	50	μA	
VCC and VBS supply under voltage positive going threshold	V _{BSUV+}		7.5	8.6	9.7	V	
VCC and VBS supply under voltage negative going threshold	V _{BSUV-}		7.0	8.1	9.2	V	
VCC and VBS supply under-voltage lockout hysteresis	$V_{BSHY} \ V_{CCHY}$		-	0.5	-	V	
SWITCHING CHARACTERISTICS							
Turn-on Rise Time	t _R		-	18	30	ns	
Turn-off Fall Time	t _F		-	13	20	ns	
Turn-On Propagation Delay	t _{on}	C _L =1000pF,	-	128	150	ns	
Turn-Off Propagation Delay	t_{off}	See Figure 5, 6, 7, 8	-	124	150	ns	
Shutdown Propagation Delay	t _{sd}		-	120	150	ns	
Delay matching, turn-on/off	МТ		-	10	-	ns	

3. Application Information

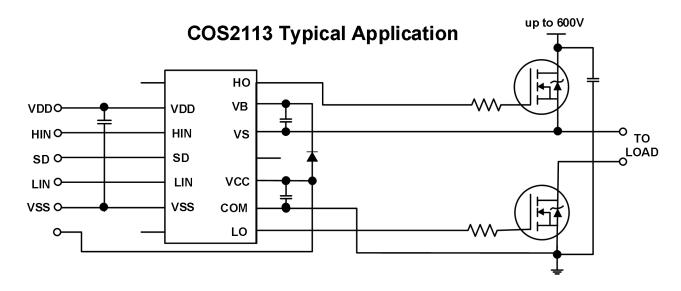


Figure 3. Typical Application

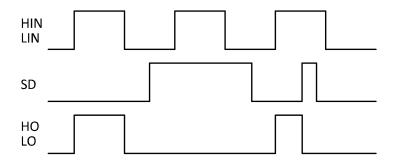


Figure 4. Input/Output Timing Diagram

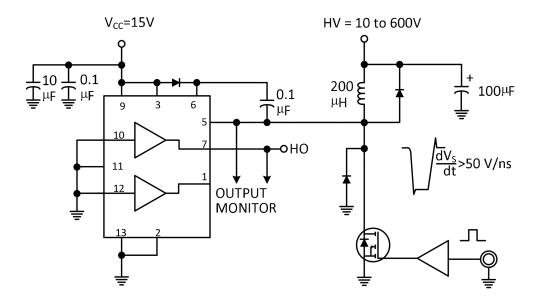


Figure 5. Floating Supply Voltage Transient Test Circuit

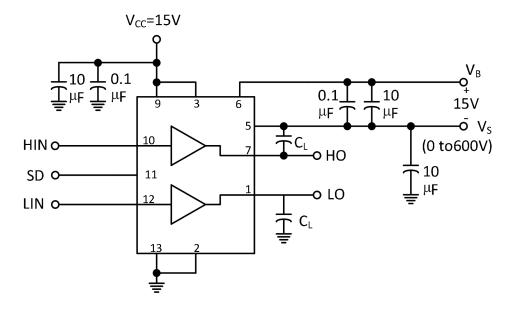


Figure 6. Switching Time Test Circuit

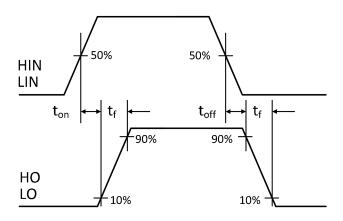


Figure 7. Switching Time Waveform Definition

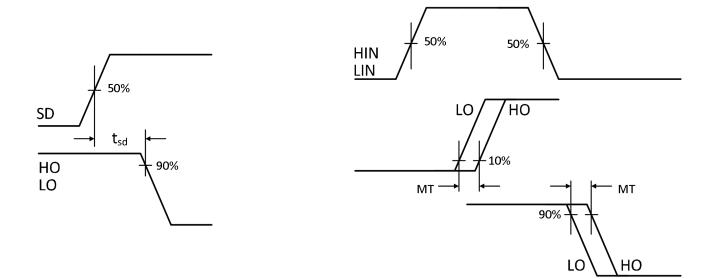
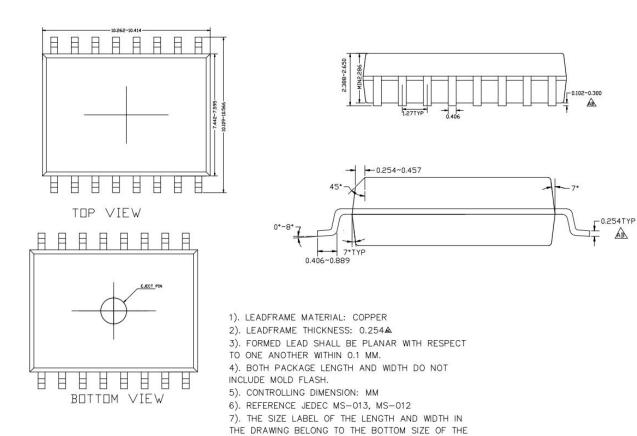
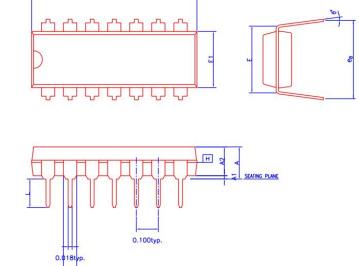


Figure 8. Shutdown Waveform Definition

Figure 9. Delay Waveform Definition


4. Ordering Information

Model	el Order Number Package Package Optio		Package Option	Marking Information
COC2442	COS2113STRPBF	WSOP-16	Tape and Reel, 3000	COS2113
COS2113	COS2113PBF	DIP-14	Tube 25	COS2113


5. Package Information

5.1 WSOP16 (Package Outline Dimensions)

5.2 DIP14 (Package Outline Dimensions)

PACKAGE.

0.060typ

SYMBOLS	MIN.	NOR.	MAX.
Α		L =	0.210
A1	0.015		-
A2	0.125	0.130	0.135
D	0.735	0.750	0.775
E		0.300 BSC	
E1	0.245	0.250	0.255
L	0.115	0.130	0.150
ев	0.335	0.355	0.375
θ°	0	7	15

UNIT : INCH