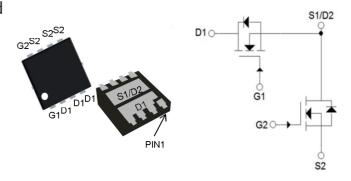


- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed
- ★ Excellent CdV/dt effect decline

Description


The S60J04F is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The S60J04F meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
40V	$6.9 \mathrm{m}\Omega$	40A

PDFN5*6-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
Vos	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
Ib@Tc=25°C	Continuous Drain Current ₁	40	А
Ib@Tc=100°C	Continuous Drain Current ₁	25	Α
lом	Pulsed Drain Current ₂	100	А
EAS	Single Pulse Avalanche Energy₃	28	mJ
las	Avalanche Current	40	А
Pb@Tc=25°C	Total Power Dissipation ₄	29	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

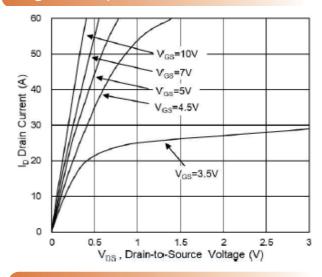
Thermal Data

Symbol	Parameter	Тур.	Max.	Units
Reja	Thermal Resistance Junction-ambient (Steady State) ₁		60	°C/W
Reuc	Thermal Resistance Junction-Case ₁	-	3.2	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V, lb=250uA	40			٧	
Dagger	Static Drain-Source On-Resistance2	Vgs=10V, Ip=12A		6.9	8.5	0	
RDS(ON)	Static Drain-Source On-Resistance2	Vgs=4.5V, ID=10A		10	15	mΩ	
V _G S(th)	Gate Threshold Voltage	Vgs=Vps, Ip =250uA	1.35		3	٧	
lano	Drain Sauras Laskags Current	V _D s=32V , V _G s=0V , T _J =25°C			1		
I DSS	Drain-Source Leakage Current	V _D s=32V , V _G s=0V , T _J =55°C			5	uA	
I _{GSS}	Gate-Source Leakage Current	Vgs=±20V, Vbs=0V			±100	nA	
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.7		Ω	
Qg	Total Gate Charge (4.5V)			5.8			
Qgs	Gate-Source Charge	Vps=20V, Vgs=4.5V, Ip=12A		3		nC	
Qgd	Gate-Drain Charge			1.2			
T _d (on)	Turn-On Delay Time			14.3			
Tr	Rise Time	VDD=15V, VGS=10V,		5.6		no	
T _d (off)	Turn-Off Delay Time	Rg=3.3Ω lp=1A		20		ns	
Tf	Fall Time			11			
Ciss	Input Capacitance			690			
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		193		pF	
Crss	Reverse Transfer Capacitance			38			

Thermal Data


Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
Is	Continuous Source Current _{1,5}	V _G =V _D =0V , Force Current			40	Α
VsD	Diode Forward Voltage2	Vgs=0V, Is=1A, TJ=25°C			1	V

- 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3.The EAS data shows Max. rating . The test condition is V_{DD}=25V,V_{GS}=10V,L=0.1mH,IAS=31A 4.The power dissipation is limited by 150°C junction temperature
- 5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

Figure 1: Output Characteristics

Figure 3:Source Drain Forward Characte

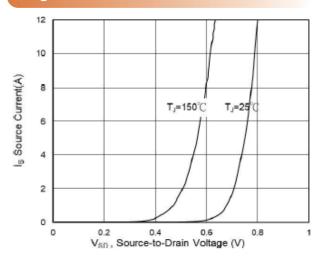


Figure 5: Normalized VGS(th) vs TJ Fig.6

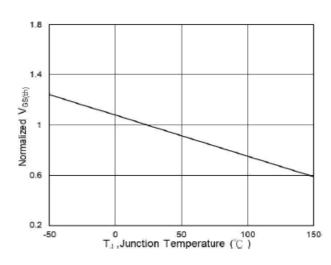


Figure 2:On-Resistance vs G-S Voltage

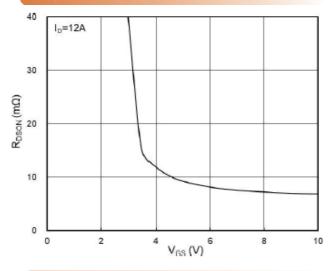


Figure 4: Gate-Charge Characteristics

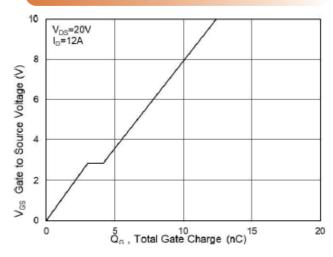
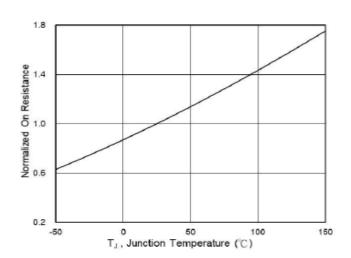



Figure 6: Normalized RDSON vs TJ

Typical Performance Characteristics

Figure 7: Capacitance

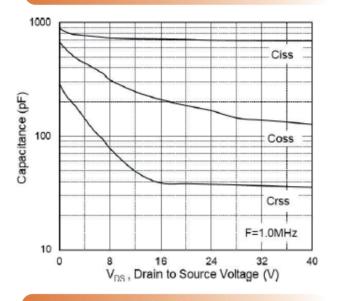


Figure 8: Safe Operating Area



Figure 9: Normalized Maximum Transien

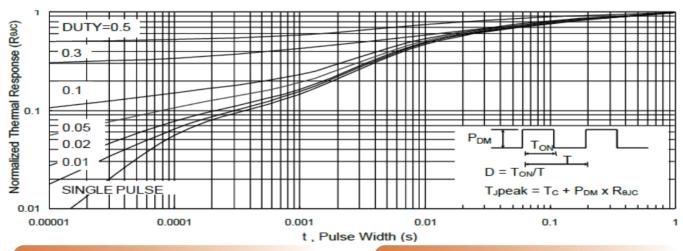
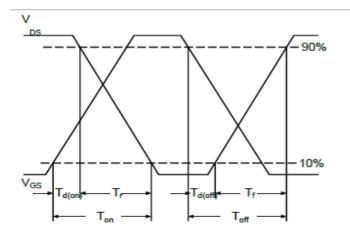
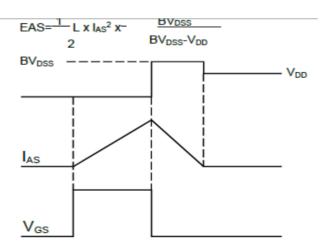
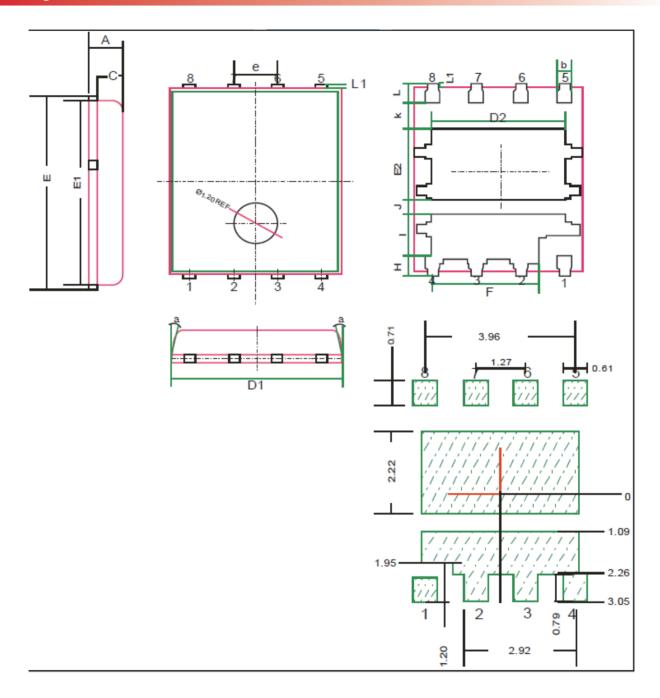




Figure.10: Switching Time Waveform


Figure.11: Unclamped Inductive Switchi

Package Information PDFN5060

SYMBOL		MM			INCH		SYMBOL	SVMBOI MM			INCH		
SIMDOL	MIN	NOM	MAX	MIN	NOM	MAX	STMDOL	MIN	NOM	MAX	MIN	NOM	MAX
A	0.90	1.00	1.10	0.035	0.039	0.043	E1	5.70	5. 75	5. 80	0. 224	0.226	0. 228
Ъ	0. 33	0.41	0.51	0.013	0.016	0.020	E2	2.02	2.17	2. 32	0.079	0.085	0.091
С	0. 20	0. 25	0.30	0.008	0.010	0.012	e	1. 27BSC			0. 05BSC		
D1	4.80	4. 90	5.00	0.189	0.193	0. 197	H	0.48	0. 58	0.68	0.018	0.022	0.026
D2	3. 61	3.81	3.96	0.142	0.150	0. 156	L	0.51	0.61	0.71	0.020	0.024	0.028
L1	0.06	0.13	0.20	0.002	0.005	0.008							
E	5. 90	6.00	6.10	0. 232	0.236	0. 240	0	0°	*	12°	*	10°	12°
K	0.50	*	*	0.019	*	*	J	0.40	0.50	0.60	0.015	0.019	0.023
I	1. 22	1.32	1.42	0.048	0.051	0.055	F	2.87	3.07	3. 22	0.112	0.12	0.126