★ Green Device Available

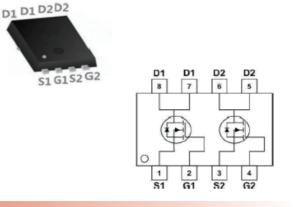
- ★ Super Low Gate Charge
- ★ Advanced Trench MOS Technology
- ★ 100% EAS Guaranteed
- ★ Excellent CdV/dt effect decline

Description

The S4896D is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The S4896D meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vds	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
lo@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	40	A
I⊳@Tc=100°C	Continuous Drain Current, Vcs @ 10V ¹	20	A
Ідм	Pulsed Drain Current ₂	180	A
EAS	Single Pulse Avalanche Energy ₃	26.1	mJ
las	Avalanche Current	15	A
P₀@Tc=25°C	Total Power Dissipation ₄	43.6	W
Tstg	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C


Thermal Data

Symbol	Parameter	Тур.	Max.	Units
Reja	Thermal Resistance Junction-ambient (Steady State)		62	°C/W
Rejc	Thermal Resistance Junction-Case1		2.8	°C/W

Product Summary RoHS

BVDSS	RDSON	ID
40V	7.2mΩ	40A

PDFN3* 3 Pin Configuration

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage VGs=0V, ID=250uA		40			V
Deserve	Static Drain-Source On-Resistance ₂	Vgs=10V, Id=12A		7.2	9.5	mΩ
RDS(ON)		Vgs=4.5V, lp=10A		10	15	
VGS(th)	Gate Threshold Voltage	Vgs=Vds, Id=250uA	1.35		3	V
la sa	Drain Course Lookana Current	VDS=32V, VGS=0V, TJ=25℃			1	
IDSS	Ibss Drain-Source Leakage Current	V⊳s=32V , VGs=0V , TJ=55°C			5	uA
Igss	Gate-Source Leakage Current	Vgs=±20V, Vds=0V			±100	nA
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		1.7		Ω
Qg	Total Gate Charge (4.5V)	VDS=20V, VGS=4.5V, ID=12A		5.8		
Qgs	Gate-Source Charge			3		nC
Qgd	Gate-Drain Charge			1.2		
Td(on)	Turn-On Delay Time			14.3		
Tr	Rise Time	VDD=15V, VGS=10V,		5.6		
Td(off)	Turn-Off Delay Time	Rg=3.3Ω lb=1A		20		ns
Tf	Fall Time			11		
Ciss	Input Capacitance			690		
Coss	Output Capacitance	acitance VDs=15V, VGs=0V, f=1MHz		193		pF
Crss	Reverse Transfer Capacitance	7		38		

Thermal Data

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current _{1,5}	Vg=VD=0V, Force Current			40	А
Vsd	Diode Forward Voltage2	Vgs=0V , Is=1A , Tյ=25℃			1	V

Note :

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is V_{DD}=25V,V_{GS}=10V,L=0.1mH,IAS=31A 4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

Figure1: Output Characteristics

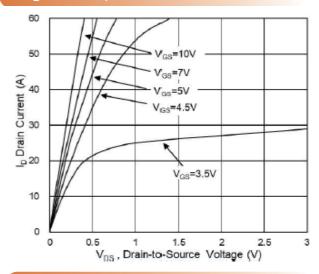


Figure 3:Source Drain Forward Character

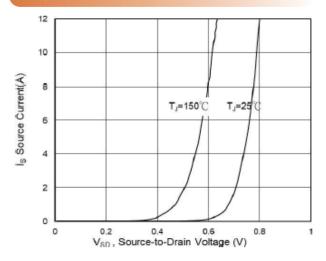


Figure 5: Normalized VGS(th) vs TJ

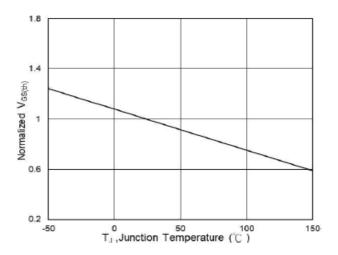


Figure 2: On-Resistance vs G-S Voltage

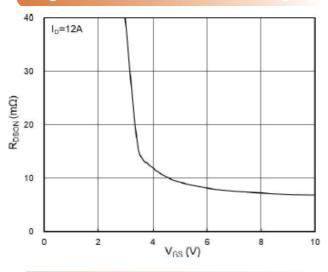


Figure 4: Gate-Charge Characteristics

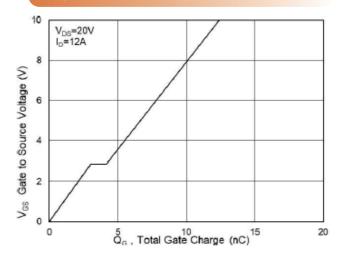
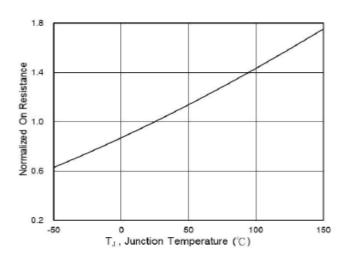
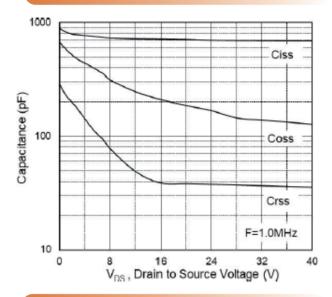
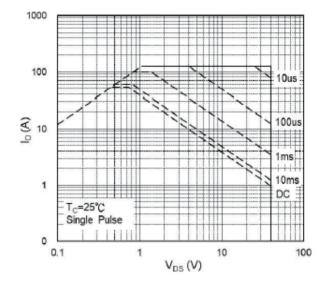
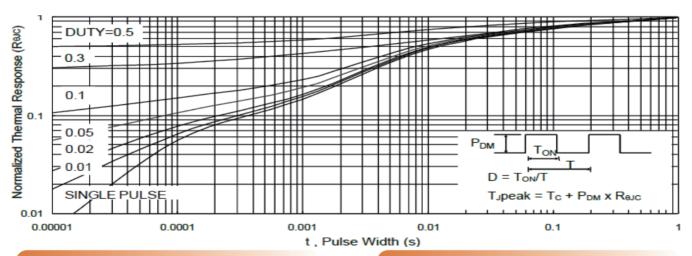




Figure 6: Normalized RDSON vs TJ


Typical Performance Characteristics



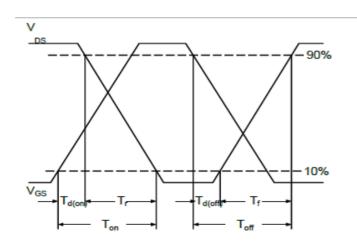
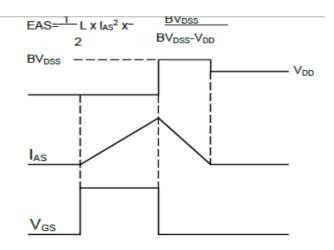
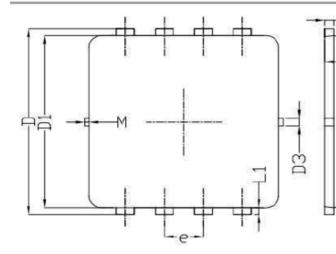
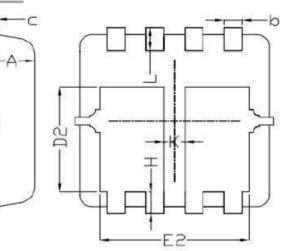
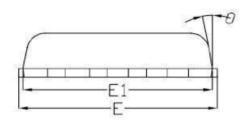

Figure 9: Normalized Maximum Transien

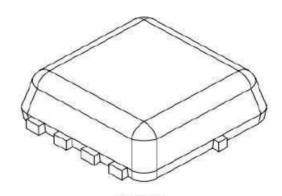
Figure 8: Safe Operating Area










S4896D

Dual PDFN3X 3 Package Outline Data

Cumbal	Dimensions (unit: mm)			
Symbol	Min	Тур	Max	
Α	0.70	0.75	0.80	
b	0.25	0.30	0.35	
С	0.10	0.15	0.25	
D	3.25	3.35	3.45	
D1	3.00	3.10	3.20	
D2	1.78	1.88	1.98	
D3		0.13		
E	3.20	3.30	3.40	
E1	3.00	3.15	3.20	
E2	2.39	2.49	2.59	
e	C	0.65 BSC		
н	0.30	0.39	0.50	
L	0.30	0.40	0.50	
L1		0.13		
к	0.30			
θ		10°	12°	
м	*	*	0.15	
* Not Specified				

Notes:

1. Refer to JEDEC MO-240 variation CA. 2. Dimensions "D1" and "E1" do NOT include mold flash protrusions or gate burrs.

3. Dimensions "D1" and "E1" include interterminal flash or protrusion.