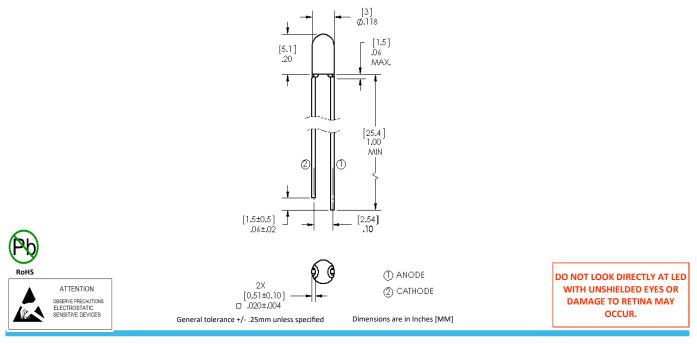
Round Through-Hole LED Lamp (3 mm)

OVLBx4C7 Series

Features:

- High brightness with well-defined spatial radiation patterns
- UV-resistant epoxy lens
- Lead-frame material is iron alloy with tin plated leads
- No stand-offs

Electronics


Description:

Each OVLBx4C7 series device is a high-intensity LED mounted in a clear plastic T-1 package. The LED provides a well-defined and even emission pattern. Its UV-resistant epoxy lens makes this device an optimal solution for outdoor applications.

Applications:

- Pedestrian signals
- Signage and architectural lighting
- Backlighting
- Automotive
- Outdoor/indoor displays

Part Number	Material	Emitted Color	Intensity Typ. mcd	Lens Color
OVLBB4C7	InGaN	Blue	1800	Clear
OVLBG4C7	IIIGan	Green	8400	Clear
OVLBR4C7	AllaCaD	Red	3700	Clear
OVLBY4C7	AllnGaP	Yellow	3700	Clear

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Round Through-Hole LED Lamp (3 mm)

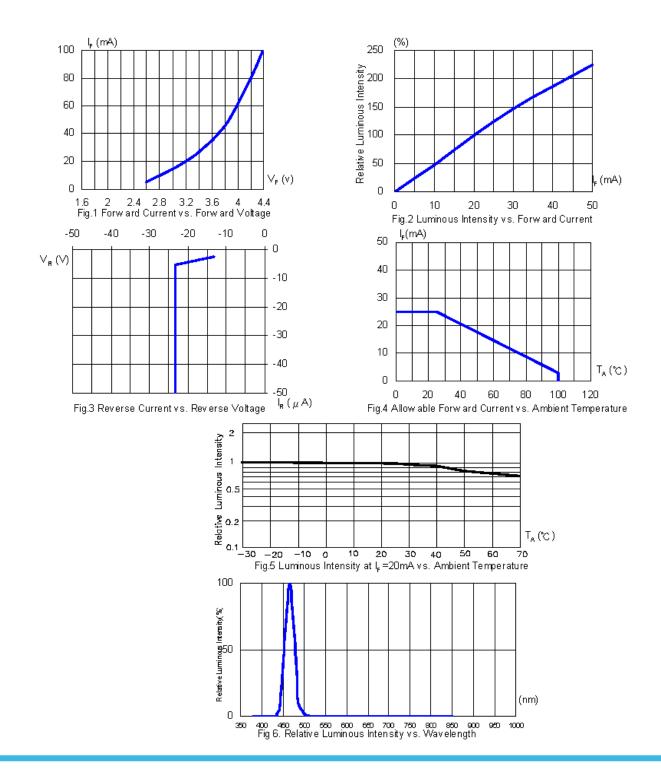
OVLBx4C7 Series

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature Range		-40 ~ +100 °C
Operating Temperature Range		-40 ~ +100 °C
Reverse Voltage (Device not designed for reverse voltage applications)		5 V Max
Continuous Forward Current (Design of heat dissipation should be considered)	Blue, Green	25 mA
Continuous Forward Current (Design of heat dissipation should be considered)	Red, Yellow	50 mA
Peak Forward Current (10% Duty Cycle, 1 kHz)	Blue, Green	100 mA
Peak Forward Current (10% Duty Cycle, 1 kHz)	Red, Yellow	100 mA
Power Dissipation	Blue, Green	100 mW
Power Dissipation	Red, Yellow	120 mW
Current Linearity vs Ambient Temperature	Blue, Green	-0.29 mA/° C
Current Linearity vs Ambient Temperature	Red, Yellow	-0.72 mA/° C
LED Junction Temperature		125° C
Electrostatic Discharge Classification (JEDEC-JESD22-A114F)		Class 1C
Lead Soldering Temperature (4 mm away from the base of the epoxy bulb)		260° C / 3 seconds

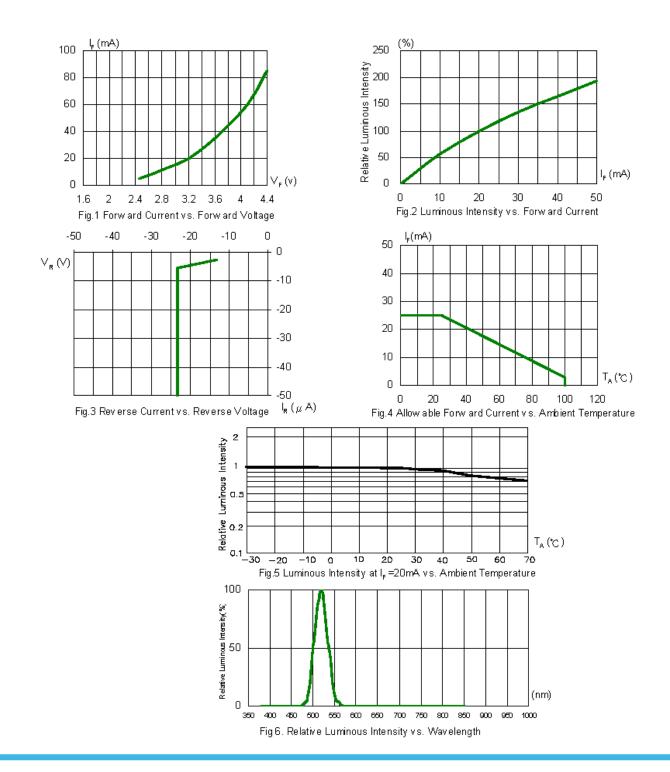
Electrical Characteristics (TA = 250 C unless otherwise noted)


SYMBOL	PARAMETER	COLOR	MIN	ТҮР	ΜΑΧ	UNITS	CONDITIONS	
Iv	Luminous Intensity	Blue	1135	1800		mcd		
		Green	4360	8400			I _F = 20 mA	
		Red	2225	3700				
		Yellow	2225	3700				
	Forward Voltage	Blue	2.6	3.2	4.0	- V		
V _F		Green	2.0				I _F = 20 mA	
		Red	1.8	2.0	2.4			
		Yellow						
	Reverse Current	Blue			10	μΑ		
I _R		Green					V _R = 5 V	
		Red						
		Yellow						
	Dominant Wavelength	Blue	460	470	475	nm		
λ_{D}		Green	519	525	531		I _F = 20 mA	
		Red	620	623	630		IF - 20 IIIA	
		Yellow	585	589	595			
2Θ½Н-Н	20½H-H 50% Power Angle			45		deg	I _F = 20 mA	

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

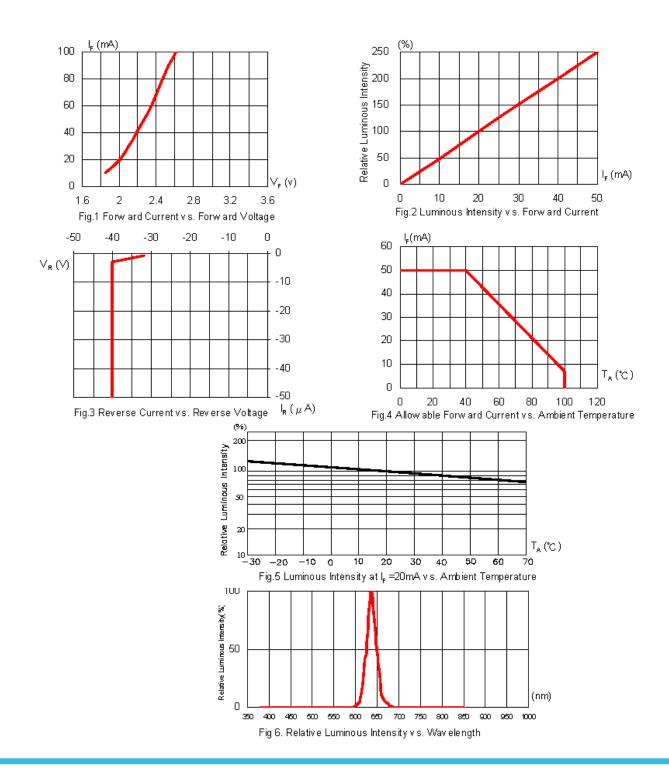
Typical Electro-Optical Characteristics Curves (BLUE)



General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Typical Electro-Optical Characteristics Curves (GREEN)



General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

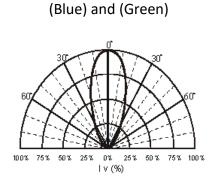
Typical Electro-Optical Characteristics Curves (RED)

General Note

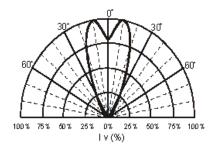
TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

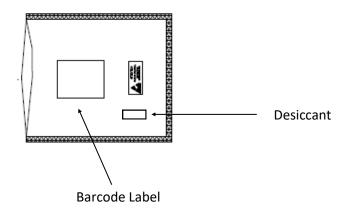
I_F (mA) (%) 250 100 80 60 40 20 l_e (mA) $\forall_{\mathsf{F}}(\mathsf{V})$ 0 0 2.8 0 10 20 30 40 50 1.6 2 2.4 3.2 3.6 Fig.2 Luminous Intensity vs. Forward Current Fig.1 Forw ard Current vs. Forw ard Voltage -50 -40 -30 -20 -10 0 $I_{\rm F}({\rm mA})$ 60 0 $\vee_{\mathsf{R}}(\vee)$ 50 -10 40 -20 30 -30 20 10 -40 $T_A\,({}^{\!\!}{}^{\scriptscriptstyle \circ}\!\!C)$ 0 -50 0 20 40 60 80 100 120 $I_{\rm R}\,(\,\mu\,A)$ Fig.3 Reverse Current vs. Reverse Voltage Fig.4 Allow able Forw ard Current vs. Ambient Temperature (%) 200 Relative Luminous Intensity 100 50 20 $T_A(\mathcal{C})$ 10 l -30 -20 -10 0 10 20 30 40 50 60 70 Fig.5 Luminous Intensity at I_F = 20mA vs. Ambient Temperature 100 Relative Luminous Intersity(%; (n m) 0 350 400 500 550 600 650 700 750 800 850 900 950 1000 450

Typical Electro-Optical Characteristics Curves (YELLOW)


Fig 6. Relative Luminous Intensity vs. Wavelength

General Note


TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


Beam Pattern:

(Red) and (Yellow)

Packaging: 500 pcs per bulk bag with desiccant

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

Reliability Test

LED lamps are checked by reliability tests based on MIL standards.

Classi- fication	Test Item	Standard Test Method	Test Conditions	Duration	Unit	Acc / Rej Criteria	Result
Life Test	Operation Life Test (OLT)	MIL-STD-750D Method 1026.3	$T_A=25^{\circ}C$, $I_F=30mA$ *	1000 Hrs	100	0 / 1	Pass
Environment Test	High Temperature Storage (HTS)	MIL-STD-750D Method 1032.1	T _A =100°C	1000 Hrs	100	0 / 1	Pass
	Low Temperature Storage (LTS)	MIL-STD-750D Method 1032.1	$T_A = -40^{\circ}C$	1000 Hrs	100	0 / 1	Pass
	Temp. & Humidity with Bias (THB)	MIL-STD-750D Method 103B	$T_A = 85^{\circ}C$, Rh=85% $I_F = 20mA **$	500 Hrs	100	0 / 1	Pass
	Thermal Shock Test (TST)	MIL-STD-750D Method 1056.1	0°C ~ 100°C 2min 2min	100 cycles	100	0 / 1	Pass
	Temperature Cycling Test (TCT)	MIL-STD-750D Method 1051.5	-40°C ~ 25°C~ 100°C ~ 25°C 30min 5min 30min 5min	100 cycles	100	0 / 1	Pass
Mechanical Test	Solderability	MIL-STD-750D Method 2026.4	235±5°C , 5 sec	1 time	20	0 / 1	Pass
	Resistance to Soldering Heat	MIL-STD-750D Method 2031.1	260±5℃,10 sec	1 time	20	0 / 1	Pass
	Lead Integrity	MIL-STD-750D Method 2036.3	Load 2.5N (0.25kgf) 0°~90°~0°, bend	3 times	20	0 / 1	Pass

(*) USL : Upper Standard Level , (**) LSL : Lower Standard Level

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

General Note

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TT Electronics: OVLBB4C7 OVLBG4C7 OVLBY4C7 OVLBR4C7