## Photologic® Slotted Optical Switch

 OPB960, OPB970, OPB980, OPB990 Series
## Features:

- Choice of logic and output driver circuits


## Warning:

- Choice of aperture size, covered or open
- Wire or PCB leads
- Choice of mounting features
- Direct TTL, LSTTL, CMOS Interface



## Description:

The OPB960/970/980/990 series of non-contact Photologic ${ }^{\circledR}$ slotted optical switches provides flexibility in meeting application specific requirements for the design engineer.

Building from a standard housing with a $0.125^{\prime \prime}(3.18 \mathrm{~mm})$ wide slot, the user can specify output logic state, output driver circuit, aperture width, aperture surface and mounting tab locations. Furthermore, an option of wire or PCB leads allows electrical interface flexibility.

The device body is an opaque plastic which minimizes sensitivity to both visible and near-infrared external light sources which may impact operation. Aperture width choices provide different optical resolution for motion sensing. A covered aperture provides dust protection, while an open aperture provides maximum protection against external light sources.

Electrical operation is over a wide supply voltage range. LED emissions are near-infrared (850—940nm).
Detector digital output logic choices of buffer or inverter with totem-pole or open-collector driver circuit simplify interface for various electrical requirements.

Custom electrical, wire and cabling services are available.
Contact your local representative or OPTEK for more information. Compliant to EU RoHS Directive 2002/95/EC

## Applications:

indication

- Rotary encoders
$\begin{array}{ll}\text { - Mechanical switch replacement } & \text { - Printers - Top of form, End of travel, Home position. } \\ \text { - Mechanical limit indication } & \text { - Sliding Door Automotive and Lift gate applications }\end{array}$
Part Number Guide


| Logic Type | Input <br> LED | Output Logic <br> State |
| :---: | :---: | :---: |
| Buffer | OFF | LOW $=0$ |
| Inverter | OFF | HIGH $=1$ |

## Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB960, OPB970, OPB980, OPB990 Series

## T <br> Electronics



Notes:
(1) RMA flux recommended. Duration can be extended to 10 seconds max.
(2) Feature controlled at body.
(3) Highly activated water soluble fluxes may attack plastic. Recommend trial to verify application.
(4) Maximum lead soldering temperature [ 1.6 mm from case for 5 seconds with soldering iron] $260^{\circ} \mathrm{C}$.
(5) Cathode lead may be shorter.
(6) Part number marking may be on any side.

## Photologic ${ }^{\circledR}$ Slotted Optical Switch OPB960, OPB970, OPB980, OPB990 Series

## TT Electronics

## PACKAGE OUTLINE for OPB980 and OPB990 Series

TABLE 2

| Wire Color | Function |
| :---: | :---: |
| Red | Anode |
| Black | Cathode |
| White | Vcc |
| Blue | Output |
| Green | Ground |



| APERTURE WIDTH GUIDE |  |  |
| :---: | :---: | :---: |
| CODE | LED | SENSOR |
| 55 | $.050^{\prime \prime}[1.27 \mathrm{~mm}]$ | $.050^{\prime \prime}[1.27 \mathrm{~mm}]$ |
| 51 | $.050^{\prime \prime}[1.27 \mathrm{~mm}]$ | $.010^{\prime \prime}[0.25 \mathrm{~mm}]$ |
| 11 | $.010^{\prime \prime}[0.25 \mathrm{~mm}]$ | $.010^{\prime \prime}[0.25 \mathrm{~mm}]$ |
| Lengths are $.050 \prime \prime 1.27 \mathrm{~mm}]$ |  |  |



N-TAB
DIMENSIONS ARE IN INCHES AND [MILLIMETERS]. TOLERANCES ARE $\pm .010$ [0.25]


Notes:
(7) Wire is 26AWG, UL Rated PVC insulation.
(8) Ideal torque for bolt or screw 0,45 to $0,68 \mathrm{Nm}$ ( 4 to 6 Lb -in ).
(9) When using a thread lock compound, ND Industries "ND Vibra-Tite Formula 3 " will avoid stress cracking plastic.
(10) Plastic is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol are recommended as cleaning agents.

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Storage Temperature Range | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Input Diode (E) |  |
| Input Diode Power Dissipation | $100 \mathrm{~mW}^{(11)}$ |
| Input Diode Forward D.C. Current, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $40 \mathrm{~mA}^{(14)}$ |
| Input Diode Reverse D.C. Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 2 V |
| Sensor (S) |  |
| Supply Voltage (Vcc to Ground) | $18 \mathrm{~V}^{(13)}$ |
| Output Photologic ${ }^{\text {® }}$ Power Dissipation | $200 \mathrm{~mW}^{(12)}$ |
| Voltage at Output Lead (Open-Collector Output), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 35V |
| Short Circuit Output Current to Ground (Ios) 1 sec Max. | 30 mA |

Notes:
(11) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(12) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(13) Prior to 2004 Vcc was limited to 5.5 V maximum.
(14) Do not connect input diode directly to a voltage source without an external current limiting resistor.

## Block Diagram

## Buffer Totem-Pole OPB960/ OPB970/ OPB980/ OPB990



Inverter Totem-Pole OPB962/ OPB972/ OPB982/ OPB992


Buffer Open-Collector
OPB961/ OPB971/ OPB981/ OPB991


Inverter Open-Collector OPB963/ OPB973/ OPB983/ OPB993


## Photologic ${ }^{\circledR}$ Slotted Optical Switch <br> OPB960, OPB970, OPB980, OPB990 Series

Electrical Characteristics ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Diode (See OP140 / OP240 LED for additional information) |  |  |  |  |  |  |
| $V_{\text {F }}$ | Forward Voltage | - | - | 1.70 | V | $\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
| $I_{R}$ | Reverse Current | - | - | 100 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
| Coupled (See OPL560 Detector for additional information) |  |  |  |  |  |  |
| $\mathrm{V}_{\text {cc }}$ | Operating D.C. Supply Voltage | 4.5 | - | 16 | V |  |
| $\mathrm{I}_{\mathrm{CC}}$ | Supply Current | - | - | 12 | mA | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 16 V |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage:  <br> Buffer Totem-Poler OPB960,OPB970 <br> OPB980,OPB990  <br> Buffer Open-CollectorOPB961,OPB971  <br> OPB981,OPB991  | - | - | 0.4 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$ |
|  | Inverter Totem-Pole OPB962,OPB972 <br> OPB982,OPB992 <br> Inverter Open-Collector OPB963,OPB973  <br> OPB983,OPB993  |  |  |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {OH }}$ | High Level Output Voltage: <br> Buffer Totem-Pole OPB960,OPB970 <br> OPB980,OPB990 | $\mathrm{V}_{\text {cc }}-2.1$ | - | - | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=800 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$ |
|  | $\begin{array}{ll}\text { Inverter Totem-Pole } & \text { OPB962,OPB972 } \\ & \text { OPB982,OPB992 }\end{array}$ |  |  |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=800 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$ |
| $\mathrm{IOH}^{\text {O }}$ | High Level Output Current: <br> Buffer Open-CollectorOPB961,OPB971 OPB981,OPB991 | - | - | 100 | $\mu \mathrm{A}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA} \end{aligned}$ |
|  | Inverter Open-Collector OPB963,OPB973 <br>  OPB981,OPB991 |  |  |  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(14)} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{F}}(+)$ | LED Positive-Going Threshold Current ${ }^{(16)}$ | - | - | 15 | mA | $\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$ | Hysteresis Ratio | - | 1.5 | - | - | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| $t_{R}, t_{F}$ | Output Rise Time, Output Fall Time | - | 70 | - | ns | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\text {F peak }}=15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ <br> 100 kHz square wave, $\mathrm{C}=10 \mathrm{pF}$ max. |
| $\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | Propagation Delay Time Low to High, High to Low | - | 5.0 | - | $\mu \mathrm{s}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=360 \Omega \text { to } \mathrm{GND} \text { (Totem-Pole) } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \text { pull-up (Open-Collector) } \end{aligned}$ |

Notes:
14) Normal application would be with light source blocked, simulated by $I_{F}=0 \mathrm{~mA}$.
15) All parameters are tested using pulse techniques.
16) An increasing current applied to the LED which causes the output logic state to change. For proper application IF(+), LED current, should be more than the stated maximum.

Logic Output vs Left to Right Bocking Distance (X-Axis Blocked)


Logic Output vs Top to Bottom Bocking Distance (Y-Axis Blocked)


# Mouser Electronics 

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

| TT Electronics: |  |
| :---: | :---: |
| OPB972T51 | OPB972N51 OPB980L11Z OPB980L51Z OPB980L55Z OPB980P11Z OPB980P51Z OPB980P55Z |
| $\underline{\text { OPB980T11Z }}$ OPB980T51Z OPB980T55Z OPB981L11Z OPB981L51Z OPB981L55Z OPB981P11Z OPB981T11Z |  |
| OPB981T51Z OPB981T55Z OPB982P11Z OPB982P51Z OPB982T51Z OPB982T55Z OPB983L11Z |  |
| OPB983L51Z OPB983P11Z OPB983P51Z OPB983T51Z OPB983T55Z OPB990L11Z OPB990L51Z OPB990L55Z |  |
| OPB990P11Z OPB990P51Z OPB990P55Z OPB990T11Z OPB990T51Z OPB990T55Z OPB991L11Z |  |
| $\underline{\text { OPB991L51Z }}$ OPB991L55Z OPB991P11Z OPB991P51Z OPB991T11Z OPB991T51Z OPB991T55Z OPB992L51Z |  |
| OPB992N55Z OPB992P51Z OPB992T11Z OPB992T51Z OPB992T55Z OPB993L11Z OPB993L55Z |  |
| OPB993P51Z OPB993T51Z OPB993T55Z OPB960N11 OPB960L51 OPB963P51 OPB960N51 OPB960N55 |  |
| OPB962N51 OPB962N55 OPB960T11 OPB960T55 OPB960T51 OPB970T55 OPB970T11 OPB962T55 |  |
| OPB962T51 OPB970T51 OPB963N11 OPB961N11 OPB961T51 OPB970N51 OPB970N55 OPB960P51 |  |
| $\underline{\text { OPB961N51 OPB970N11 OPB961N55 OPB963N51 OPB971N11 OPB963T11 OPB963T51 OPB963T55 }}$ |  |
| OPB971T11 | OPB972L51 OPB972P51 OPB972T55 OPB973L51 OPB973N11 OPB973N51 OPB973T51 |
| OPB973T55 | OPB971N51 |

