

Reference Specification

Leaded MLCC for Automotive with AEC-Q200 RCE Series

Product specifications in this catalog are as of Aug. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Leaded MLCC RCE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

Part Number Configuration

ex.)	RCE	5C	2E	100	J	2	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range		
5C	C0G	-55∼25°C	0+30/-72ppm/°C	25°C	-55 ∼ 125°C		
30	(EIA code)	25∼125°C	0+/-30ppm/°C	25 C	-5579 125 C		

Rated Voltage

Code	Rated voltage
2E	DC250V
2J	DC630V

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 100

$$10 \times 10^0 = 10 pF$$

Capacitance Tolerance

•	
Code	Capacitance Tolerance
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

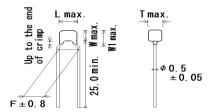
Code	Package
Α	Taping type of Ammo
В	Bulk type

3. Marking

Temp. char. : Letter code : A (C0G Char.) Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

Capacitance tolerance : Code

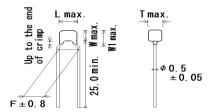

: Letter code : 4 (DC250V) Letter code : 7 (DC630V) Rated voltage

Company name code : Abbreviation : 🗀

(Ex.)		
Rated voltage Dimension code	DC250V	DC630V
2	(M) 102 J4A	G 102

4. Part number list

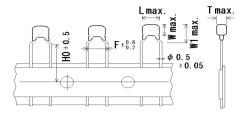
- Inside Crimp (Lead Style:K*)



Unit : mm

Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Сар.	Cap. Tol.	ı	Dime	ension (mm)		Dimension (LxW)	q.
Part Number			(V)		101.	L	W	W1	F	Т	Lead Style	(р
	RCE5C2E100J2K1H03B	C0G	250	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCE5C2E120J2K1H03B	C0G	250	12pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCE5C2E150J2K1H03B	C0G	250	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	Ę
	RCE5C2E180J2K1H03B	C0G	250	18pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	ţ
	RCE5C2E220J2K1H03B	C0G	250	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	ţ
	RCE5C2E270J2K1H03B	C0G	250	27pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E330J2K1H03B	C0G	250	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E390J2K1H03B	C0G	250	39pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E470J2K1H03B	C0G	250	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E560J2K1H03B	C0G	250	56pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E680J2K1H03B	C0G	250	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E820J2K1H03B	C0G	250	82pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E101J2K1H03B	C0G	250	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E121J2K1H03B	C0G	250	120pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E151J2K1H03B	C0G	250	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E181J2K1H03B	C0G	250	180pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E221J2K1H03B	C0G	250	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E271J2K1H03B	C0G	250	270pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E331J2K1H03B	C0G	250	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E391J2K1H03B	C0G	250	390pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E471J2K1H03B	C0G	250	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E561J2K1H03B	C0G	250	560pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E681J2K1H03B	C0G	250	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E821J2K1H03B	C0G	250	820pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E102J2K1H03B	C0G	250	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E122J2K1H03B	C0G	250	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E152J2K1H03B	C0G	250	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E182J2K1H03B	C0G	250	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E222J2K1H03B	C0G	250	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2E272J2K1H03B	C0G	250	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E332J2K1H03B	C0G	250	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E392J2K1H03B	C0G	250	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E472J2K1H03B	C0G	250	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E562J2K1H03B	C0G	250	5600pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E682J2K1H03B	C0G	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	
	RCE5C2E822J2K1H03B	C0G	250	8200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2E103J2K1H03B	C0G	250	10000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2J100J2K1H03B	C0G	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	,
	RCE5C2J120J2K1H03B	C0G	630	12pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;
	RCE5C2J150J2K1H03B	C0G	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	;

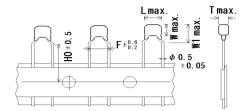
PNLIST


·Inside Crimp (Lead Style:K*)

Unit: mm

Customer	Murata Part Number	T.C.	DC Rated	d Can	Сар.		Dime		Dimension (LxW)	Pack qty.		
Part Number			Volt. (V)	,	Tol.	L	W	W1	F	Т	Lead Style	
R	CE5C2J180J2K1H03B	C0G	630	18pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J220J2K1H03B	C0G	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J270J2K1H03B	C0G	630	27pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J330J2K1H03B	C0G	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J390J2K1H03B	C0G	630	39pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J470J2K1H03B	C0G	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J560J2K1H03B	C0G	630	56pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J680J2K1H03B	C0G	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J820J2K1H03B	C0G	630	82pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J101J2K1H03B	C0G	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J121J2K1H03B	C0G	630	120pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J151J2K1H03B	C0G	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J181J2K1H03B	C0G	630	180pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J221J2K1H03B	C0G	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J271J2K1H03B	C0G	630	270pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J331J2K1H03B	C0G	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J391J2K1H03B	C0G	630	390pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J471J2K1H03B	C0G	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J561J2K1H03B	C0G	630	560pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J681J2K1H03B	C0G	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J821J2K1H03B	C0G	630	820pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J102J2K1H03B	C0G	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J122J2K1H03B	C0G	630	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J152J2K1H03B	C0G	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J182J2K1H03B	C0G	630	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
R	CE5C2J222J2K1H03B	C0G	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500

Inside Crimp Taping (Lead Style: M*)



Unit : mm

	_											Unit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		D	Dimension (LxW)	Pa qty				
Part Number			Volt. (V)	- 1	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCE5C2E100J2M1H03A	C0G	250	10pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E120J2M1H03A	C0G	250	12pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E150J2M1H03A	C0G	250	15pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E180J2M1H03A	C0G	250	18pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E220J2M1H03A	C0G	250	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E270J2M1H03A	C0G	250	27pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E330J2M1H03A	C0G	250	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E390J2M1H03A	C0G	250	39pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E470J2M1H03A	C0G	250	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E560J2M1H03A	C0G	250	56pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E680J2M1H03A	C0G	250	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E820J2M1H03A	C0G	250	82pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCE5C2E101J2M1H03A	C0G	250	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E121J2M1H03A	C0G	250	120pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E151J2M1H03A	C0G	250	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E181J2M1H03A	C0G	250	180pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E221J2M1H03A	COG	250	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E271J2M1H03A	COG	250	270pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E331J2M1H03A	COG	250	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E391J2M1H03A	C0G	250	390pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E471J2M1H03A	C0G	250	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E561J2M1H03A	C0G	250	560pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E681J2M1H03A	C0G	250	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E821J2M1H03A	C0G	250	820pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E102J2M1H03A	C0G	250	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E122J2M1H03A	C0G	250	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E152J2M1H03A	C0G	250	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E182J2M1H03A	C0G	250	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E222J2M1H03A	C0G	250	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E272J2M1H03A	C0G	250	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E332J2M1H03A	C0G	250	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E392J2M1H03A	C0G	250	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E472J2M1H03A	C0G	250	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E562J2M1H03A	C0G	250	5600pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2E682J2M1H03A	C0G	250	6800pF	±5%	5.5	4.0	6.0	5.0	3.15			2
	RCE5C2E822J2M1H03A	COG	250	8200pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C2E103J2M1H03A	COG	250	10000pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C2J100J2M1H03A	COG	630	10pF	±5%	5.5	4.0	6.0	5.0	3.15			2
	RCE5C2J120J2M1H03A	COG	630	12pF	±5%	5.5	4.0	6.0	5.0	3.15			2
•	RCE5C2J150J2M1H03A	COG	630	15pF	±5%	5.5	4.0	6.0	5.0	3.15			2

PNLIST

Inside Crimp Taping (Lead Style: M*)

Unit : mm

Unit:									Unit : mm				
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		D		Dimension (LxW)	Pack qty.			
Part Number			Volt. (V)	oup.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCE5C2J180J2M1H03A	C0G	630	18pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J220J2M1H03A	C0G	630	22pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J270J2M1H03A	C0G	630	27pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J330J2M1H03A	C0G	630	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J390J2M1H03A	C0G	630	39pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J470J2M1H03A	C0G	630	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J560J2M1H03A	C0G	630	56pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J680J2M1H03A	C0G	630	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J820J2M1H03A	C0G	630	82pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J101J2M1H03A	C0G	630	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J121J2M1H03A	C0G	630	120pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J151J2M1H03A	C0G	630	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J181J2M1H03A	C0G	630	180pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J221J2M1H03A	C0G	630	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J271J2M1H03A	C0G	630	270pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J331J2M1H03A	C0G	630	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J391J2M1H03A	C0G	630	390pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J471J2M1H03A	C0G	630	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J561J2M1H03A	C0G	630	560pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J681J2M1H03A	C0G	630	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J821J2M1H03A	C0G	630	820pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J102J2M1H03A	C0G	630	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J122J2M1H03A	C0G	630	1200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J152J2M1H03A	C0G	630	1500pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J182J2M1H03A	C0G	630	1800pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C2J222J2M1H03A	C0G	630	2200pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

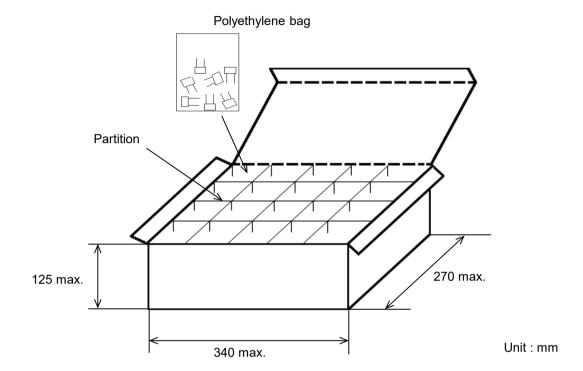
PNLIST

	J-QZ00 Mulala	Standard Spec	cifications and Test Methods		
lo.	Test Item		Specification AEC-Q200 Test Method		
ı					
	Electrical Test			-	
	High Appearance		No defects or abnormalities.	Sit the capacitor for 1000±12h at 150±3°C. Let sit for 24±2h at	
	Temperature	Capacitance	Within ±3% or ±0.3pF	*room condition, then measure.	
	Exposure	Change	(Whichever is larger)		
	(Storage)	Q	30pF ≦ C : Q ≧ 350		
			10pF ≦ C < 30pF : Q ≧ 275+5C/2		
			10pF > C : Q ≧ 200+10C		
			C : Nominal Capacitance (pF)		
		I.R.	More than 1,000MΩ or 50 MΩ•μF		
			(Whichever is smaller)		
3	Temperature	Appearance	No defects or abnormalities.	Perform the 1000 cycles according to the four heat treatments	
	Cycling	Capacitance	Within ±5% or ±0.5pF	listed in the following table. Let sit for 24±2 h at *room condition,	
		Change	(Whichever is larger)	then measure.	
		Q	30pF ≦ C : Q ≧ 350		
			10pF ≤ C < 30pF : Q ≥ 275+5C/2	Step 1 2 3 4	
			10pF > C : Q ≧ 200+10C	Temp. (°C) -55+0/-3 Room Temp. 125+3/-0 Room Temp.	
			C : Nominal Capacitance (pF)	Time 15±3 1 15±3 1	
		I.R.	1,000MΩ or 50MΩ · μF min.	(min.)	
			(Whichever is smaller)		
	Moisture	Appearance	No defects or abnormalities.	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)	
	Resistance	Capacitance	Within ±5% or ± 0.5pF	treatment shown below, 10 consecutive times.	
		Change	(Whichever is larger)	Let sit for 24±2 h at *room condition, then measure.	
		Q	30pF ≦ C : Q ≧ 200	11	
			30pF > C : Q ≧ 100+10C/3	(°C) Humidity 80~98% Humidity 80~98% Humidity	
			00pr	70 90~98% V 90~98% V 90~98%	
			C : Nominal Capacitance (pF)	65	
		I.R.	500MΩ or 25MΩ•μF min.	60 55	
			(Whichever is smaller)		
			,	₹45 	
				\$50 \$45 \$40 \$35	
				F 30 // // // // // // // // // // // // //	
				25 5 1	
				20 +10 -2 °C	
				15 10 Initial measurement	
				5	
				-5	
				One cycle 24 hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Hours	
	Biased	Appearance	No defects or abnormalities.	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)	
	Humidity	Capacitance	Within ±5% or ± 0.5pF	at 85±3°C and 80 to 85% humidity for 1000±12h.	
		Change	(Whichever is larger)	Remove and let sit for 24±2 h at *room condition, then measure.	
		Q	30pF ≦ C : Q ≧ 200	The charge/discharge current is less than 50mA.	
			30pF > C : Q ≧ 100+10C/3		
			C : Nominal Capacitance (pF)		
		I.R.	500MΩ or 25MΩ·μF min. (Whichever is smaller)		

ESRCE05D

		2005	Refere	ence only			
No.	lo. AEC-Q200 Specification			AEC-Q200 Test Method			
6	Operational	Appearance	No defects or abnormalities.	Apply voltage in Table for 1000±12h at 125±3°C.			
	Life Capacitance Change		Within ±3% or ±0.3pF	Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.			
			(Whichever is larger)				
		Q	30pF ≦ C : Q ≧ 350	<u> </u>			
			10pF ≦ C < 30pF : Q ≧ 275+5C/2	Rated Voltage Test Voltage			
			10pF > C : Q ≧ 200+10C	DC250V 150% of the rated voltage			
			Top: 0 : Q = 200 :00	DC630V, DC1kV 120% of the rated voltage			
			C : Nominal Capacitance (pF)				
		I.R.	1,000MΩ or 50MΩ·μF min.	- 			
		1.1 (.	(Whichever is smaller)				
7	External Visua	1	No defects or abnormalities.	Visual inspection.			
8	Physical Dime		Within the specified dimensions.	Using calipers and micrometers.			
	Marking	HSIOH	To be easily legible.	Visual inspection.			
	Resistance	Annogrango	No defects or abnormalities.				
		Appearance		Per MIL-STD-202 Method 215			
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol			
		Q	$30pF \le C : Q \ge 1,000$	3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer			
			30pF > C : Q ≧ 400+20C				
				Solvent 3 : 42 parts (by volume) of water			
			C : Nominal Capacitance (pF)	1part (by volume) of propylene glycol monomethyl ether			
		I.R.	More than 10,000MΩ or 500 MΩ·μF	1 part (by volume) of monoethanolamine			
			(Whichever is smaller)				
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3			
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).			
		Q	30pF ≦ C : Q ≧ 1,000	The specified test pulse should be Half-sine and should have a			
			30pF > C : Q ≧ 400+20C	duration : 0.5ms, peak value : 1500G and velocity change : 4.7m/s.			
			C : Nominal Capacitance (pF)				
12	Vibration	Appearance	No defects or abnormalities.	The capacitor should be subjected to a simple harmonic motion			
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied			
		Q	30pF ≤ C : Q ≥ 1,000	uniformly between the approximate limits of 10 and 2000Hz.			
			30pF > C : Q ≧ 400+20C	The frequency range, from 10 to 2,000Hz and return to 10Hz,			
				should be traversed in approximately 20 min. This motion			
			C : Nominal Capacitance (pF)	should be applied for 12 items in each 3 mutually perpendicular			
				directions (total of 36 times).			
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to			
	to	Capacitance Within ±2.5% or ±0.25pF		2.0mm from the root of terminal at 260±5°C for 10±1 seconds.			
	Soldering	Change	(Whichever is larger)				
	Heat	Dielectric	No defects	Post-treatment			
	(Non-	Strength		Capacitor should be stored for 24±2 hours at *room condition.			
	Preheat)	(Between					
		terminals)					
13-2	Resistance	Appearance	No defects or abnormalities.	First the capacitor should be stored at 120+0/-5°C for			
	to	Capacitance	Within ±2.5% or ±0.25pF	60+0/-5 seconds. Then, the lead wires should be immersed in the			
	Soldering	Change	(Whichever is larger)	melted solder 1.5 to 2.0mm from the root of terminal at 260±5°C for			
	Heat	Dielectric	No defects	7.5+0/-1 seconds.			
	(On-		140 4010013	7.0 · 0/-1 3600Hu3.			
	Preheat)	Strength		• Post treatment			
		(Between		Post-treatment Conscitor should be stored for 24±2 hours at *room condition.			
į	i	terminals)	No defects or abnormalities	Capacitor should be stored for 24±2 hours at *room condition.			
12.0	Dooistan	Appearance	No defects or abnormalities. Within ±2.5% or ±0.25pF	Test condition			
13-3	Resistance	Cana-it-	100 HOLD + 7 5% OF +H 750F	Temperature of iron-tip: 350±10°C			
13-3	to	Capacitance	· ·				
13-3	to Soldering	Change	(Whichever is larger)	Soldering time : 3.5±0.5 seconds			
13-3	to Soldering Heat	Change Dielectric	· ·	Soldering position			
13-3	to Soldering Heat (soldering	Change Dielectric Strength	(Whichever is larger)	Soldering position Straight Lead : 1.5 to 2.0mm from the root of terminal.			
13-3	to Soldering Heat	Change Dielectric	(Whichever is larger)	Soldering position			
13-3	to Soldering Heat (soldering	Change Dielectric Strength	(Whichever is larger)	Soldering position Straight Lead: 1.5 to 2.0mm from the root of terminal. Crimp Lead: 1.5 to 2.0mm from the end of bend.			
13-3	to Soldering Heat (soldering	Change Dielectric Strength (Between	(Whichever is larger)	Soldering position Straight Lead : 1.5 to 2.0mm from the root of terminal.			

				Reference of	only			
э.		AEC-Q200 Specifications Test Item		AEC-Q200 Test Method				
4	Thermal	Appearance		abnormalities.		Perform the 300 cycles according to the two heat treatments lis		
	Shock	Capacitance	Within ±5% or	r ±0.5pF				me is 20s.). Let sit for
		Change	(Whichever is		24±2 h at '	room condition,	then measure	•
		Q	30pF ≦ C : Q	1 ≥ 350		Step	1	2
			$10pF \le C < 3$	30pF : Q ≧ 275+5C/2		Temp.	•	
			10pF > C : Q	≧ 200+10C		(°C)	-55+0/-3	125+3/-0
			C : Nominal C	Capacitance (pF)		Time (min.)	15±3	15±3
		I.R.	1,000MΩ or 5	0MΩ·μF min.		(111111.)		
			(Whichever is	s smaller)				
5	ESD	Appearance	No defects or	abnormalities.	Per AEC-C	Q200-002		
		Capacitance	Within the spe	ecified tolerance.				
		Q	30pF ≦ C : Q	1 ≧ 1,000		_		
			30pF > C : Q					
			C · Nominal C	Capacitance (pF)				
		I.R.	+	.000MΩ or 500 MΩ·μF				
		1.1 (.	(Whichever is	•				
6	Coldorability	1		ould be soldered with uniform	Should bo	placed into stop	n aging for 0h	±15 min
16	Solderability					placed into steal		
			_	e axial direction over 95% of the		•	• •	solution of ethanol
			circumferential direction.		(JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds.			
						•	dipping is up to	about 1.5 to 2mm fror
					the terminal body.			
					Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu)			
					235±5°C	H60A or H63A E	utectic Solde	r
17	Electrical	Appearance	No defects or	abnormalities.	bnormalities. Visual inspection.			
	Characte-	Capacitance	Within the specified tolerance. $30pF \le C : Q \ge 1,000$		The capac	itance, Q should	be measured	at 25°C at the frequence
	rization	Q			and voltag	e shown in the ta	ble.	
			30pF > C : Q ≧ 400+20C C : Nominal Capacitance (pF)	Г	Nominal Cap.	Frequency	Voltage	
					-	C ≦ 1000pF	1±0.1MHz	AC0.5 to 5V(r.m.s.)
				 	C > 1000pF	1±0.1kHz	AC1±0.2V(r.m.s.)	
					L	о посорг	120.114.12	7101120.2 (1.111.0.)
		I.R.	Between	10,000MΩ or 50MΩ•μF min.	The insula	tion resistance s	nould be meas	sured with DC500±50V
			Terminals	Terminals (Whichever is smaller)	(DC250V±	25V in case of ra	ted voltage : [DC250V) at 25 °C within
					min. of cha	arging.		
		Dielectric	Between	No defects or abnormalities.	The capac	itor should not be	e damaged wh	en voltage in Table is
		Strength	Terminals		applied be	tween the termin	ations for 1 to	5 seconds.
					(Charge/D	ischarge current	≦ 50mA.)	
						Data di Valta da		4.) (-14
						Rated Voltage	+	t Voltage
						DCGEOV		ie raieu voi(ade i
						DC250V	200% of th	
						DC630V	150% of th	e rated voltage
							150% of th	
			Body	No defects or abnormalities.	The capac	DC630V DC1kV	150% of th	ne rated voltage
			Body Insulation	No defects or abnormalities.		DC630V DC1kV	150% of the	ne rated voltage the rated voltage the metal balls of 1mm
			Body Insulation	No defects or abnormalities.	diameter s	DC630V DC1kV itor is placed in a o that each term	150% of the 130% of the container with the containe	ne rated voltage the rated voltage the metal balls of 1mm uit is kept approximatel
			-	No defects or abnormalities.	diameter s 2mm from	DC630V DC1kV itor is placed in a o that each term the balls, and vo	150% of the 130% of the container with inal, short-circ litage in table in	ne rated voltage the rated voltage the metal balls of 1mm the province of the
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor	150% of the 130% of the container with inal, short-circultage in table is terminals and	ne rated voltage the rated voltage the metal balls of 1mm the province of the
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta	150% of the 130%	ne rated voltage the rated voltage the metal balls of 1mm the sept approximatel the simpressed for 1 to 5 the metal balls.
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta DC250V	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.
			-	No defects or abnormalities.	diameter s 2mm from seconds b	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta DC250V	150% of the 130%	the rated voltage the rated voltage the metal balls of 1mm the province of the
roon	n condition" 「	Temperature : 1	Insulation	No defects or abnormalities. tive humidity: 45 to 75%, Atmosph	diameter s 2mm from seconds b (Charge/D	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta DC250V DC630V,DC	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.
roon	n condition" 「	Femperature : 1	Insulation		diameter s 2mm from seconds b (Charge/D	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta DC250V DC630V,DC	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.
roon	n condition" 「	Femperature : 1	Insulation		diameter s 2mm from seconds b (Charge/D	DC630V DC1kV itor is placed in a o that each term the balls, and voetween capacitor ischarge current Rated Volta DC250V DC630V,DC	150% of the 130%	h metal balls of 1mm uit is kept approximatel is impressed for 1 to 5 if metal balls.


ESRCE05D

٥.		Q200 Item	Specifications AEC-Q200 Test Method			
18	Terminal Strength	Tensile Strength Termination not to be broken or loosened.		As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds.		
		Bending Strength	Termination not to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.		
19	Capacitance Temperature Characteristics		Within the specified Tolerance. 25°C to 125°C: 0±30ppm/°C -55°C to 25°C: 0+30/-72ppm/°C	The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2		
				The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.		

6. Packing specification

•Bulk type (Packing style code : B)

The size of packing case and packing way

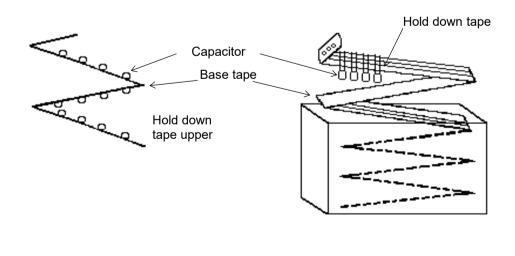
The number of packing = $^{^{\star1}}$ Packing quantity \times $^{^{\star2}}$ n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

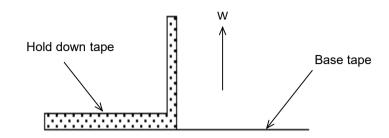

EKTRPE01

7. Taping specification

7-1. Dimension of capacitors on tape

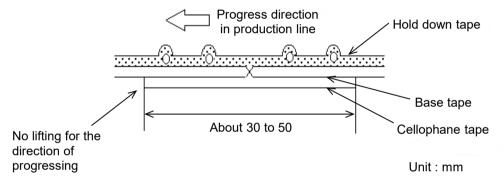
Inside crimp taping type < Lead Style : M1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

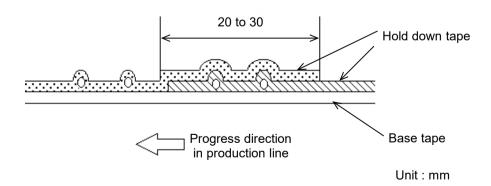


Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component		12.7+/-1.0		
Pitch of sprocket hole		12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7		
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	H0	16.0+/-0.5		
Protrusion length	Q.	0.5 max.		
Diameter of sprocket hole	ФD0	4.0+/-0.1		
Lead diameter	Фd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness	
Deviation across tape	∆ h1	2.0 max. (Di	2.0 max. (Dimension code : W)	
Deviation across tape	Δh2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead		Up to the end of	crimp	


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RCE5C2J101J2M1H03/	A RCE5C2E182J2M1H03.	A RCE5C2E392J2K1H03I	B RCE5C2E271J2M1H03A
RCE5C2E682J2K1H03B	RCE5C2E121J2K1H03B	RCE5C2E182J2K1H03B	RCE5C2J471J2M1H03A
RCE5C2E822J2K1H03B	RCE5C2E180J2M1H03A	RCE5C2E682J2M1H03A	RCE5C2J681J2M1H03A
RCE5C2E120J2K1H03B	RCE5C2J221J2M1H03A	RCE5C2E680J2K1H03B	RCE5C2J121J2M1H03A
RCE5C2J271J2M1H03A	RCE5C2E470J2K1H03B	RCE5C2E180J2K1H03B	RCE5C2E100J2M1H03A
RCE5C2J121J2K1H03B	RCE5C2E470J2M1H03A	RCE5C2J150J2K1H03B	RCE5C2J151J2M1H03A
RCE5C2J182J2K1H03B	RCE5C2J821J2M1H03A	RCE5C2E151J2K1H03B	RCE5C2E332J2M1H03A
RCE5C2J390J2K1H03B	RCE5C2J330J2M1H03A	RCE5C2E332J2K1H03B	RCE5C2E272J2K1H03B
RCE5C2J222J2M1H03A	RCE5C2J331J2K1H03B	RCE5C2J100J2M1H03A	RCE5C2J180J2M1H03A
RCE5C2E472J2M1H03A	RCE5C2J102J2M1H03A	RCE5C2J182J2M1H03A	RCE5C2E331J2M1H03A
RCE5C2J180J2K1H03B	RCE5C2E561J2K1H03B	RCE5C2E122J2M1H03A	RCE5C2E150J2M1H03A
RCE5C2E181J2K1H03B	RCE5C2E330J2M1H03A	RCE5C2J270J2M1H03A	RCE5C2J150J2M1H03A
RCE5C2E222J2K1H03B	RCE5C2E270J2M1H03A	RCE5C2J680J2M1H03A	RCE5C2E222J2M1H03A
RCE5C2J470J2M1H03A	RCE5C2J561J2K1H03B	RCE5C2E391J2M1H03A	RCE5C2J120J2K1H03B
RCE5C2J220J2K1H03B	RCE5C2J151J2K1H03B	RCE5C2E271J2K1H03B	RCE5C2E121J2M1H03A
RCE5C2J560J2K1H03B	RCE5C2E181J2M1H03A	RCE5C2J681J2K1H03B	RCE5C2E820J2M1H03A
RCE5C2J820J2K1H03B	RCE5C2J102J2K1H03B	RCE5C2E101J2M1H03A	RCE5C2E471J2M1H03A
RCE5C2J122J2K1H03B	RCE5C2E330J2K1H03B	RCE5C2E680J2M1H03A	RCE5C2E822J2M1H03A
RCE5C2J120J2M1H03A	RCE5C2E561J2M1H03A	RCE5C2J821J2K1H03B	RCE5C2J100J2K1H03B
RCE5C2E562J2K1H03B	RCE5C2E152J2M1H03A	RCE5C2E101J2K1H03B	RCE5C2J391J2M1H03A
RCE5C2J470J2K1H03B	RCE5C2J152J2K1H03B	RCE5C2E221J2M1H03A	RCE5C2J680J2K1H03B
RCE5C2E122J2K1H03B	RCE5C2J181J2M1H03A	RCE5C2J152J2M1H03A	RCE5C2E472J2K1H03B
RCE5C2E270J2K1H03B	RCE5C2E103J2M1H03A	RCE5C2E471J2K1H03B	RCE5C2E272J2M1H03A
RCE5C2J270J2K1H03B	RCE5C2J122J2M1H03A	RCE5C2E102J2K1H03B	RCE5C2E220J2K1H03B
RCE5C2J181J2K1H03B	RCE5C2E221J2K1H03B	RCE5C2E820J2K1H03B	RCE5C2E560J2M1H03A