

High Performance Selectable 1:4 Differential Fanout Buffer

Features

- 4 differential outputs with 2 banks
- User-configurable output signaling standard for each bank: • LVDS or LVPECL or HCSL
- LVCMOS reference output up to 200MHz
- Up to 1.5GHz output frequency for differential outputs
- Ultra-low additive phase jitter: < 0.03ps (typ) (differential 156.25MHz, 12KHz to 20MHz integration range)
- Selectable reference inputs support either single-ended or differential or Xtal
- Low skew between outputs within banks (<40ps)
- Low delay from input to output (Tpd typ. < 1.5ns) .
- Separate input output supply voltage for level shifting
- 2.5V / 3.3V power supply
- Industrial temperature support
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) .
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green):
 - 32-pin, TQFN (ZH)

Description

The PI6C49S1504T is a high-performance fanout buffer device which supports up to 1.5GHz frequency. This device is ideal for systems that need to distribute low-jitter clock signals to multiple destinations.

Applications

- Networking Systems, including Switches and Routers
- High-Frequency Backplane-based Computing and Telecom ٠ Platforms

Block Diagram

Notes:

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

^{2.} See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin #	Pin Name	Туре	Description
1, 8, 17, 24	GND	Power	Negative power supply
25	NC	-	Not Connect
2, 5	V _{ddA}	Power	Power supply for Bank A Output buffers. V_{ddA} operates from 3.3V or 2.5V
13	CLK_SEL0	Input	Clock input source selection pin
16	CLK_SEL1	Input	Clock input source selection pin
14,	CLK0	Tarant	Differential also de innert
15	nCLK0	Input	Differential clock input
27,	CLK1	Innut	Differential algorithmut
26	nCLK1	Input	Differential clock input
11	XTAL_In	Input	Input for crystal, XO, or single ended clock
12	XTAL_Out	Output	Output for crystal. Leave Xtal_Out floating if Xtal_In is driven by a single ended clock
10, 28	V _{DD}	Power	Power supply for core
18,	nQB1	Outrout	Differential contract also de
19	QB1	Output	Differential output clock
21,	nQB0	Qutnut	Differential output clock
22	QB0	Output	

Pin Description Cont.

Pin #	Pin Name	Туре	Description
29	Ref_Out	Output	Reference output clock
7,	nQA1	Quitmut	Differential output clock
6	QA1	Output	
4,	nQA0	Outmut	Differential autout als als
3	QA0	Output	
9	CLKout_TYPE0	Input	Bank A and Bank B output buffer type selection pins
32	CLKout_TYPE1	Input	Bank A and Bank B output buffer type selection pins
ePad	ePad	GND	Connect to the PCB ground
20, 23	V _{ddB}	Power	Power supply for Bank B Output buffers. V_{ddB} operates from 3.3 V or 2.5V
30	VddRef	Power	Power supply for reference clock output
31	RefOutEn	Input	REFout enable input

Function Table

Table 1: Input Selection

CLK_SEL1	CLK_SEL0	Selected Input
0	0	CLK0, nCLK0
0	1	CLK1, nCLK1
1	X	XTAL_In

Table 2: Differential Output Buffer Type Selection

CLKout_TYPE1	CLKout_TYPE0	CLKoutX Buffer Type (Bank A and B)
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Disabled (Hi-Z)

Table 3: Reference Output Enable

REFout_EN	REFout STATE
0	Disabled (Hi-Z)
1	Enabled

Table 4: CLKx Input vs. Output States

State of Selected Input Clock	State of Enabled Outputs		
CLKx and nCLKx	LogiaLogy		
Inputs Floating	Logic Low		
CLKx and nCLKx	Net from out of Octoor is Us defined		
Inputs Shorted Together	Not Supported. Output is Ordenned		
CLKx Logic Low	Logic Low		
CLKx Logic High	Logic High		

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested)

Storage temperature55 to +150°C
Supply Voltage to Ground Potential (V_{DD,}V_{DDO})0.5 to +4.6V
Inputs (Referenced to GND)0.5 to $V_{\mbox{\tiny DD}}\mbox{+}0.5\mbox{V}$
Clock Output (Referenced to GND)0.5 to $V_{\mbox{\tiny DD}}\mbox{+}0.5\mbox{V}$
Latch up200mA
ESD Protection (Input) 2000V min (HBM)
Junction Temperature

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{DD}	Core Supply Voltage		2.375		3.465	V
V _{DDO}	Output Supply Voltage	$V_{DDO} \le V_{DD}$	2.375		3.465	V
I _{DD}	Core Power Supply Current			90	120	
		All LVPECL outputs unloaded		150	190	
I _{DDO}	Output Power Supply Current	All LVDS outputs loaded		110	130	1117
		All HCSL outputs loaded		95		
T _A	Ambient Operating Temperature ⁽¹⁾		-40		85	°C
Тв	PCB Operating Temperature ⁽¹⁾		-40		105	°C

Note:

1. Either T_A or T_B used as operating condition

DC Electrical Specifications - Differential Inputs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{IH}	Input High current	Input = V_{DD}			150	uA
I _{IL}	Input Low current	Input = GND	-150			uA
C _{IN}	Input capacitance			3		PF
V _{IH}	Input high voltage				V _{DD} +0.3	V
V _{IL}	Input low voltage		-0.3			V
V _{ID}	Input Differential Amplitude PK-PK		0.15		1.3	V
V _{CM}	Common model input voltage		0.25		V _{DD} -1.2	V
ISO _{MUX}	MUX isolation			-89		dBc

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
\mathbf{I}_{IH}	Input High current	Input = V_{DD}			150	uA
I _{IL}	Input Low current	Input = GND	-150			uA
V_{IH}	Input high voltage	V _{DD} =3.3V	2.0		V _{DD} +0.3	V
V_{IL}	Input low voltage	V _{DD} =3.3V	-0.3		0.8	V
V_{IH}	Input high voltage	V _{DD} =2.5V	1.7		V_{DD} +0.3	V
V_{IL}	Input low voltage	$V_{DD}=2.5V$	-0.3		0.7	V

DC Electrical Specifications - LVCMOS Inputs

DC Electrical Specifications- LVPECL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		V _{DDO} -1.4		V _{DDO} -0.9	V
V _{OL}	Output Low voltage		V _{DDO} -2.2		V _{DDO} -1.7	V

DC Electrical Specifications- LVDS Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		1.4	1.5	1.6	V
V _{OL}	Output Low voltage		1	1.1	1.25	V
Vocm	Output commode voltage		1.2	1.3	1.45	V
DVocm	Change in Vocm between com- pletely output states				50	mV
Ro	Output impedance		85		140	W

DC Electrical Specifications - HCSL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH} Output High voltage	Output II'shoults as	2.5V	660	725	850	mV
	3.3V	700	850	900	mV	
V _{OL}	Output Low voltage		-150		150	mV

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}		V_{DDO} =3.3V +/-5%, I_{OH} -8mA	2.3			V
	Output High voltage	V _{DDO} =2.5V +/- 5%, I _{OH =} -8mA	1.5			V
V _{OL}	Output Low voltage	$V_{\rm DDO}$ =3.3V +/-5%, $I_{\rm OL=}$ 8mA			0.5	V
		V _{DDO} =2.5V +/- 5%, I _{OL =} 8mA			0.4	V
V _{OH}	Output High voltage	V _{DDO} =3.3V +/-5%, I _{OH =} -24mA	2.1			V
		V _{DDO} =2.5V +/- 5%, I _{OH =} -16mA	1.5			V
V _{OL}	Output Low voltage	V _{DDO} =3.3V +/-5%, I _{OL =} 24mA			1	V
		V _{DDO} =2.5V +/- 5%, I _{OL =} 16mA			0.8	V

DC Electrical Specifications - LVCMOS Output

AC Electrical Specifications - Differential Outputs

Parameter	Description	Conditions			Тур.	Max.	Units
Г		LVPECL, LVDS				1500	MIL
F _{OUT}	Clock output frequency	HCSL				250	MHZ
			LVPECL	100	150	300	ps
T _r	Output rise time	From 20% to 80%	LVDS	100	150	300	
			HCSL	300		700	
			LVPECL	100	150	300	
T _f	Output fall time	From 80% to 20%	LVDS	100	150	300	ps
			HCSL	300		700	
		Frequency<650MHz, $V_{\rm ID} \ge 400 {\rm mV}$	LVPECL, HCSL (<250MHz)	48		52	%
			LVDS	47		53	
-	Output duty cycle V _{II} Fre V _{II} Fre V _{II}	Frequency<1GHz,	LVPECL	45		55	
T _{ODC}		$V_{\rm ID} \geq 400 mV$	LVDS	45		55	
		Frequency<1.5GHz, $V_{ID} \ge 400 \text{mV}$	LVDS	40		60	
		Frequency<1.5GHz, $V_{ID} \ge 400 \text{mV}$	LVPECL	40		60	
		LVPECL outputs @ <2	1GHz	500		1100	
V	Output swing Single-ended	LVPECL outputs @ >1GHz		400		1000	mV
V PP		LVDS outputs @ <1GHz		250		600	
		LVDS outputs @ >1GHz		250		550	
 т	Buffer additive jitter DMS	156.25MHz, 12kHz to	20MHz		0.02		ps
1 j	Buffer additive jitter RMS 156.25MHz, 10kHz to 1M		1MHz		0.01		ps

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{CROSS}	Absolute crossing voltage	HCSL		460		mV
DV _{CROSS}	Total variation of crossing voltage	HCSL			140	mV
Т _{sk}	Output Skew	4 outputs devices, outputs in same bank, with same load, at DUT.		15	40	ps
T		LVPECL, LVDS @ 3.3V, 100MHz		570		ps
I _{PD}	Propagation Delay	HCSL @ 3.3V, 100MHz		900		ps
T _{od}	Valid to HiZ				200	ns
T _{OE}	HiZ to valid				200	ns
T _{P2P Skew}	Part to Part Skew ⁽¹⁾			80	120	ps

AC Electrical Specifications – Differential Outputs Cont.

AC Electrical Specifications – CMOS

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
E	Def. Out face on an	XTAL input	10		50	MHz
F _{OUT}	Ref_Out frequency	Reference input			200	MHz
т	Deffer a 11:4: iitten DMC	XTAL input		0.3		ps
1 _j	Buffer additive jitter RMS	Reference input		0.03		ps
$t_{r/} t_{f}$	Rise time, Fall time	$C_L = 5pF$		0.8		ns
T _{odc}	Output duty cycle	C _L = 5pF 3.3V, max test freq. 250MHz 2.5V, max test freq. 150MHz	45		55	%
t_{PD}	Propagation delay	3.3V, 25MHz		4500		ps
ts	Setup time		300			ps
t _{SOD}	Clock edge to output disable	Ref_Out	2		4	cycles
t _{soe}	Clock edge to output enable	Ref_Out	2		4	cycles
R _{IUT}	Output Impodence	V_{DDO} = 3.3V ± 5%		30		Ω
		$V_{\rm DDO}{=}2.5V\pm5\%$		45		Ω

Notes:

1. This parameter is guaranteed by design

Crystal Characteristics

Parameter	Min.	Тур.	Max.	Units
Mode of Oscillation		Fundamental		
Frequency Range	10		50	MHz
Equivalent Series Resistance (ESR)			70	Ω
Shunt Capacitance			7	pF
Load Capacitance	10		18	pF
Drive Level			500	μW

Recommended Crystals

Diodes Recommends:

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500091, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm

http://www.pericom.com/pdf/datasheets/se/FL.pdf

Propagation Delay (TPD)

Part to Part Skew

LVPECL/ LVDS Output Swing vs. Frequency

Propagation Delay vs Temperature

1.5GHz LVPECL/ LVDS Waveform

2.5V LVDS Waveform

3.3V LVPECL Waveform

3.3V LVDS Waveform

Phase Noise and Additive Jitter

Output phase noise (Dark Blue) vs Input Phase noise (light blue)

Additive jitter is calculated at 25MHz ~71fS RMS (12kHz to 5MHz). Additive jitter = $\sqrt{(\text{Output jitter}^2 - \text{Input jitter}^2)}$

Ref_out 25MHz Phase Noise Plot, VDD=VDDO=3.3V, 25°C, Driven by 25MHz CMOS XO

156.25M LVDS Output Additive Jitter Noise Plot, 3.3V

3.3V LVDS Output Jitter 88fs vs. Input 72fs

Agilent E5052A Signal Source Analyzer Trigger -30.00 -40,00 -50.00 z 20 10. 10. 19. -60.00 MHz 006 MHZ Single -70,00 vis k. vsis Ran Noise: vise: Range Range rt Band Mar 19548 dP-Continuous -80,00 -90.00 Restart Ditter: idual FM: -100.0 -110.0 Source -120.0 Internal Ext Trig Polarity -130.0 Negativ -140.0 Average Trigger OFF -150.0 Return -160.0 170.0 Freq Band [99M-1.5GH IF Gain 20dB LO Opt [<150kHz] et 10 H op 40 MHz 2001-01-01 01:45 A DEF n 5dB

3.3V 156.25M LVPECL Input LVPECL output Jitter 81fs vs. input jitter 75fs

156.25M LVPECL XO Input, LVPECL output Noise, 3.3V

Configuration Test Load Board Termination for LVPECL/ LVDS Outputs

Configuration Test Load Board Termination for HCSL Outputs

Configuration Test Load Board Termination for LVCMOS Outputs

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{\rm REF} = V_{\rm DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

Figure 1. Single-ended Input to Differential Input Device

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. All power pins should be individually connected to the power supply plane through vias, and 0.1µF an 1µF bypass capacitors should be used for each pin.

Single Ended Input, AC Couple

Single Ended Input, DC Couple

Single Ended Input, DC Couple

Driving X1 with a Single Ended Input

LVPECL, AC Couple, Thevenin Equivalent

LVPECL, DC Couple, Thevenin Equivalent

LVDS AC Couple at Load

PI6C49S1504T

LVDS DC Couple

LVDS AC Couple with Internal Termination

0.1µF QAn+/ QBn+ ₹kΩ LVDS 100Ω Differential 100Ω≶ Vbias Driver QAn-/ QBn-0.1µF

Single Ended LVPECL, DC Couple

Single Ended LVPECL, DC Couple, Thevenin Equivalent

Single Ended LVPECL, AC Couple, Thevenin Equivalent

LVPECL/ LVDS AC and DC input

Part Marking

Top mark not available at this time. To obtain advance information regarding the top mark, please contact your local sales representative.

Packaging Mechanical

32-TQFN (ZH)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6C49S1504TZHIEX	ZH	32-contact, Thin Quad Flat No-Lead (TQFN)	-40 °C to 85 °C

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

- antimony compounds.
- 4. I = Industrial
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS 1 TO ANY INFORMATION CONTAINED IN THIS DOCUMENT. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FIT-NESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein 2. and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. 3. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-condi-5 tions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6 Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inac-7 curacies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes 8 assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com