

30V N-CHANNEL ENHANCEMENT MODE MOSFET PowerDI3333-8

Product Summary

BV _{DSS}	R _{DS(ON)} Max	I _D Max T _C = +25°C
	1.7 m Ω @ $V_{GS} = 10$ V	100A
30V	2.8mΩ @ V _{GS} = 4.5V	100A

Description

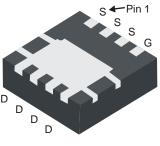
This MOSFET is designed to minimize the on-state resistance (R_{DS(ON)}), yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

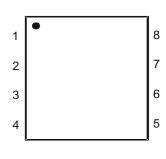
- Backlighting
- **Power Management Functions**
- DC-DC Converters

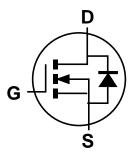

Features and Benefits

- Low R_{DS(ON)} Ensures On-State Losses are Minimized
- Excellent $Q_{gd} \times R_{DS(ON)}$ Product (FOM)
- Advanced Technology for DC-DC Converts
- Small Form Factor Thermally Efficient Package Enables Higher **Density End Products**
- Occupies Just 33% of the Board Area Occupied by SO-8 Enabling Smaller End Product
- 100% UIS (Avalanche) Rated
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)


Mechanical Data

- Case: PowerDI®3333-8
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections Indicator: See Diagram
- Terminal Finish Matte Tin Annealed Over Copper Leadframe. Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.008 grams (Approximate)

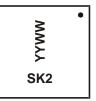

PowerDI3333-8



Bottom View

Top View

Equivalent Circuit


Ordering Information (Note 4)

Part Number	Case	Packaging	
DMT32M5LFG-7	PowerDI3333-8	2,000/Tape & Reel	
DMT32M5LFG-13	PowerDI3333-8	3,000/Tape & Reel	

Notes:

- 1. EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. All applicable RoHS exemptions applied.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

SK2 = Product Type Marking Code YYWW = Date Code Marking YY = Last Two Digits of Year (ex: 17 = 2017) WW = Week Code (01 to 53)

Maximum Ratings (@ $T_C = +25^{\circ}C$, unless otherwise specified.)

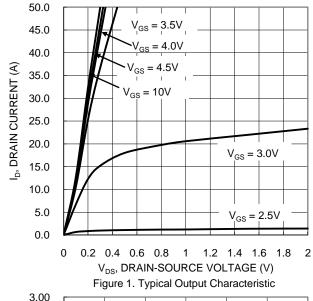
Characteristic	Symbol	Value	Unit	
Drain-Source Voltage	V_{DSS}	30	V	
Gate-Source Voltage	V_{GSS}	±20	V	
Continuous Drain Current (Note 6) $V_{GS} = 10V$ $T_C = +25^{\circ}C$ $T_C = +70^{\circ}C$		ΙD	100 100	Α
Continuous Drain Current (Note 5) $V_{GS} = 10V$ $T_A = +25^{\circ}C$ $T_A = +70^{\circ}C$		I _D	30 24	Α
Maximum Continuous Body Diode Forward Current (Note 5)	Is	2.8	А	
Pulsed Drain Current (380µs Pulse, Duty Cycle = 1%)	I _{DM}	350	Α	
Pulsed Body Diode Forward Current (380µs Pulse, Duty Cycle = 1	I _{SM}	350	Α	
Avalanche Current, L = 0.1mH	I _{AS}	46.7	Α	
Avalanche Energy, L = 0.1mH	Eas	109	mJ	

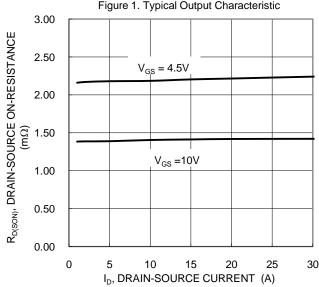
Thermal Characteristics

Characteristic		Symbol	Value	Unit
Total Power Dissipation (Note 5)	$T_A = +25^{\circ}C$	P_D	2.3	W
Thermal Resistance, Junction to Ambient (Note 5)		$R_{\theta JA}$	54	°C/W
Total Power Dissipation (Note 6) $T_C = +25^{\circ}C$		P _D	50	W
Thermal Resistance, Junction to Case (Note 6)		R _{eJC}	2.5	°C/W
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +150	°C

Electrical Characteristics (@T_J = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)							
Drain-Source Breakdown Voltage	BV _{DSS}	30	_	_	V	$V_{GS} = 0V$, $I_D = 1mA$	
Zero Gate Voltage Drain Current	lann	_	_	1	μΑ	$V_{DS} = 24V, V_{GS} = 0V$	
2010 Gate Voltage Brain Guirent	I _{DSS}	_	_	10		$V_{DS} = 30V$, $V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_	_	±10	μΑ	$V_{GS} = 20V$, $V_{DS} = 0V$	
	1033					$V_{GS} = -16V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 7)	•						
Gate Threshold Voltage	V _{GS(TH)}	1	1.4	3	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
		_	1.4	1.7	mΩ	$V_{GS} = 10V, I_D = 20A$	
Static Drain-Source On-Resistance	R _{DS(ON)}		2.1	2.8	11122	$V_{GS} = 4.5V, I_D = 15A$	
State State Control of the State Sta	NDS(ON)	_	1.9	2.6	mΩ	$V_{GS} = 10V, I_D = 20A,$ $T_J = +125^{\circ}C \text{ (Note 8)}$	
Diode Forward Voltage	V_{SD}	_	0.7	1	V	$V_{GS} = 0V, I_{S} = 2A$	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	C _{iss}	_	4066	_		V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	
Output Capacitance	Coss	_	1736	_	pF		
Reverse Transfer Capacitance	C_{rss}	_	333	_		1 - 1101112	
Gate Resistance	R_{g}	_	0.71	_	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	
Total Gate Charge (V _{GS} = 4.5V)	Qg	_	34	_			
Total Gate Charge (V _{GS} = 10V)	Qg	_	67.7	_	nC	V _{DS} = 15V, I _D = 20A	
Gate-Source Charge	Q_{gs}	_	8	_	110		
Gate-Drain Charge	Q_{gd}	_	15	_			
Turn-On Delay Time	t _{D(ON)}	_	7.2	_			
Turn-On Rise Time	t _R	_	13.2	_	ns	$V_{DD} = 15V, V_{GS} = 10V,$ $R_G = 3\Omega, I_D = 20A$	
Turn-Off Delay Time	t _{D(OFF)}	_	37.4	_	115		
Turn-Off Fall Time	t _F	_	23.9				
Bodyy Diode Reverse Recovery Time	t _{RR}	_	28.7	_	ns	1 15 \ di/dt - 500 \/ \/ \/	
Body Diode Reverse Recovery Charge	Q_{RR}	_	45.8	_	$_{\rm nC}$ $_{\rm lf}$ = 15A, di/dt = 500A/ μ s		


5. Device mounted on FR-4 substrate PC board, 2oz copper, with thermal bias to bottom layer 1inch square copper plate. Notes:


6. Thermal resistance from junction to soldering point (on the exposed drain pad).7. Short duration pulse test used to minimize self-heating effect.

8. Guaranteed by design. Not subject to product testing.

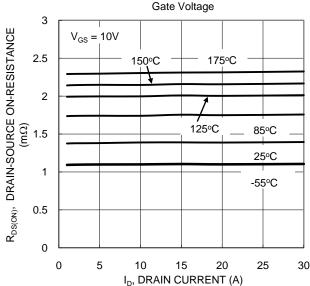
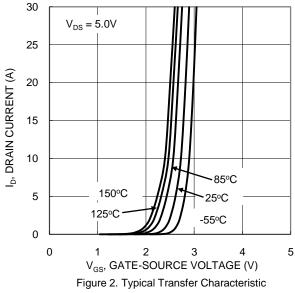
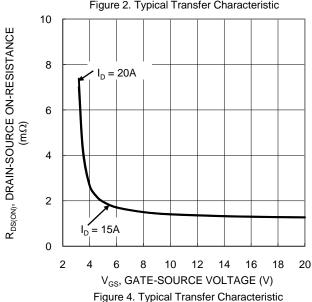




Figure 3. Typical On-Resistance vs. Drain Current and

Figure 5. Typical On-Resistance vs. Drain Current and Temperature

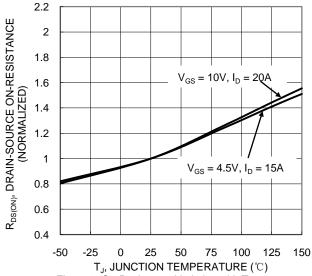
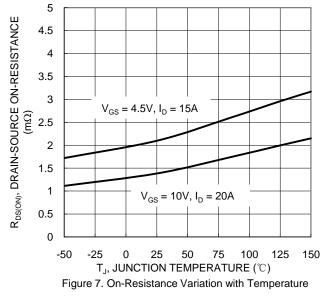



Figure 6. On-Resistance Variation with Temperature

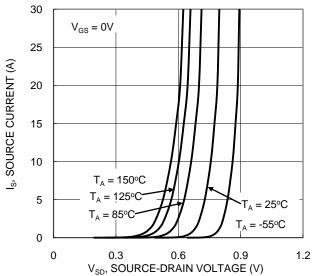
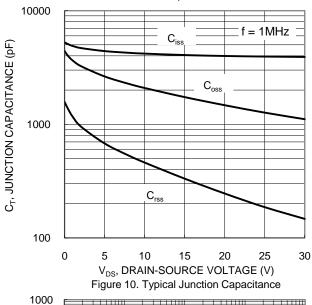
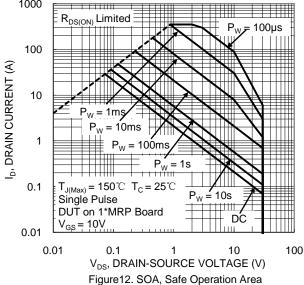
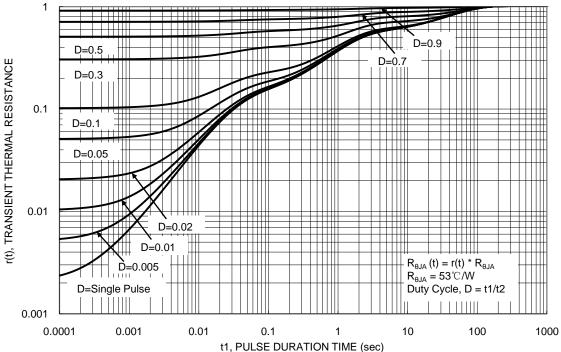
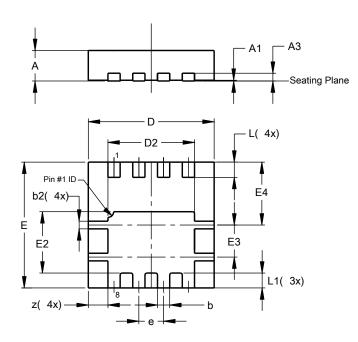




Figure 9. Diode Forward Voltage vs. Current 10 8 6 4 $V_{DS} = 15V, I_{D} = 20A$ 2 0 0 10 20 30 40 50 60 70 Q_q (nC) Figure 11. Gate Charge

2.5 $V_{GS(TH)},$ GATE THRESHOLD VOLTAGE (V) 2 $I_D = 1mA$ 1.5 $I_D = 250 \mu A$ 1 0.5 0 -50 0 25 50 75 100 125 150 T_J, JUNCTION TEMPERATURE (°C)

Figure 8. Gate Threshold Variation vs. Junction Temperature




Figure 13. Transient Thermal Resistance

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI3333-8



PowerDI3333-8					
Dim	Min	Max	Тур		
Α	0.75	0.85	0.80		
A1	0.00	0.05	0.02		
A3	_	_	0.203		
b	0.27	0.37	0.32		
b2	0.15	0.25	0.20		
D	3.25	3.35	3.30		
D2	2.22	2.32	2.27		
Е	3.25	3.35	3.30		
E2	1.56	1.66	1.61		
E3	0.79	0.89	0.84		
E4	1.60	1.70	1.65		
е	-	_	0.65		
L	0.35	0.45	0.40		
L1	_	_	0.39		
Z	_	_	0.515		
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI3333-8

Dimensions	Value (in mm)		
С	0.650		
Х	0.420		
X1	0.420		
X2	0.230		
Х3	2.370		
Υ	0.700		
Y1	1.850		
Y2	2.250		
Y3	3.700		
Y4	0.540		

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

DMT32M5LFG-7 DMT32M5LFG-13