A Product Line of Diodes Incorporated

PI5USB30213

USB 3.0/3.1 Gen 1 SuperSpeed Mux/Demux Switch with I²C Control for Type-C Connector

Features

- → USB Type-CTM Specification 1.1
- → Dual Differential Channel, 2:1 USB 3.0/31 GEN 1 Mux/DeMux
- → Switches USB controller and Type-C connector
- → Supports Host-mode/Device-mode/Dual-role mode
- → Auto-configure ports orientation through CC detection
- → Supports VCONN to power active cables and other accessories
- → Supports over-current protection and over-voltage protection for VCONN
- → Allow both pin control and I²C interface
- → Integrated power switches, high-precision resistors and current sources for CC pins
- → Provides support for default current, 1.5A and 3A modes with I²C control
- → Output indicator for plug-in detection
- → Power saving mode
- → Wide power supply range : 2.7V 5.5V
- → Temperature Range: -40°C to 85°C
- → Packaging (Pb-free & Green):
 - 24- contact, X1QFN(2mm x 4mm)

Applications

- Notebooks
- Mobile Phones
- Tablets
- · Docking Station

Pin Configuration

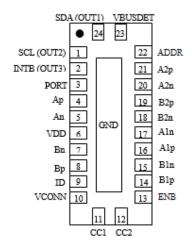


Figure 1. Pin Assignment (Top View)

Description

The PI5USB30213 is a dual differential channel bi-directional multiplexer/de-multiplexer switch solution for USB 3.0/31 GEN 1 Type-C connector applications.

PI5USB30213 switches between the USB controller and the new Type-C connector. It supports host mode, device mode and dual-role mode ports with automatic configuration based on the voltage levels detected on CC pin. It offers excellent signal integrity for high-speed signals at low power dissipation.

PI5USB30213 supports both pin and I²C control base on ADDR pin setting. In pin control mode, the PORT input pin determines the port setting, whether this is a host, device or dual-role port. In host mode, the system can monitor ID pin to know the connector status while default current mode is set. Systems running in device mode can monitor system VBUS for connector status as well as OUT1 and OUT2 pins for host's charging profile capability.

Enabling I²C control mode allow high flexibility for port control and communications through registers read/write in PI5USB30213. There is also flexibility to support Default, 1.5A and 3A current modes. An interrupt signal for indicating changes with the I²C registers is sent to the master to notify the system any change in the Type-C connector while in parallel the systemcan still monitor ID pin.

Block Diagram

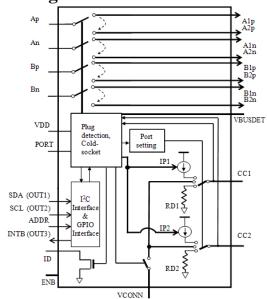
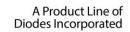
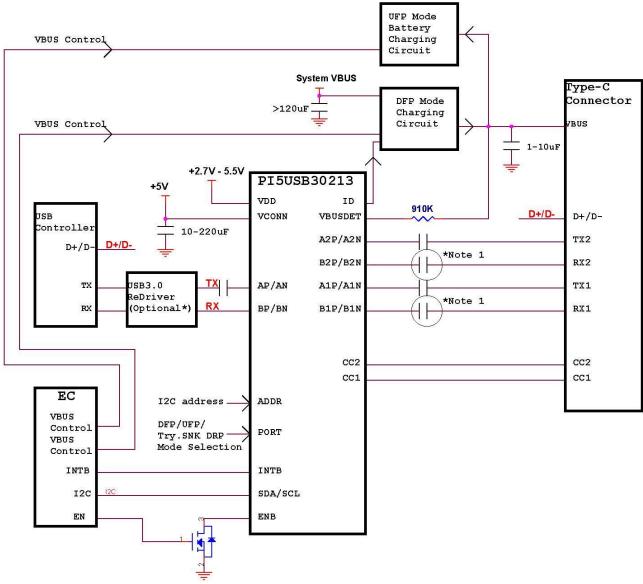



Figure 2. PI5USB30213 Block diagram



Pin Descriptions

Pin Number	Pin Name	I/O	Description
			I ² C communication clock signal.
			Dual function as open drain Type-C Current Mode Detect 1 in pin
			control mode when port is a device;
1	SCL/OUT2	I/O	OUT2 OUT1 Current Mode
			Hi-Z Hi-Z Default
			Hi-Z Low Medium
			Low Low High
			Open drain output. In I ² C control mode, this is an active LOW interrupt
			signal for indicating changes in I ² C registers.
2	INTB/OUT3	О	Dual function as analog audio adapter detection in pin control mode:
-	112,0010		OUT3=Hi-Z – Not detected;
			OUT3=Low – Analog audio adapter detected
			Tri-level input pin to indicate port mode (for pin control only):
3	PORT	I	PORT is floating –Try.SNK Dual Role (DRP);
			PORT=VDD - Host (SRC);
			PORT=GND – Device (SNK)
4	Ap	I/O	Differential USB 3.0/31 GEN 1 signal A (PHY side)
5	An	I/O	Differential USB 3.0/31 GEN 1 signal A (PHY side)
6	VDD	Power	Positive supply voltage from VBAT
7	Bn	I/O	Differential USB 3.0/31 GEN 1 signal B (PHY side)
8	Bp	I/O	Differential USB 3.0/31 GEN 1 signal B (PHY side)
			Open drain output. Asserted low when CC pin detected device
9	ID	О	attachment when port is a Host (or dual-role acting as Host), otherwise
			ID is hi-z.
10	VCONN	Power	Supply voltage for VCONN
11	CC1	I/O	Type-C Configuration channel signals
12	CC2	I/O	Type-C Configuration channel signals
			Active-low enable input pin (with internal weak pull up)
13	ENB	I	ENB=VDD – Disabled/Low Power State
			ENB=GND - Enabled/Active State
14	B1p	I/O	Differential USB 3.0/31 GEN 1 signal B for position 1 connection
15	B1n	I/O	Differential USB 3.0/31 GEN 1 signal B for position 1 connection
16	A1p	I/O	Differential USB 3.0/31 GEN 1 signal A for position 1 connection
17	A1n	I/O	Differential USB 3.0/31 GEN 1 signal A for position 1 connection
18	B2n	I/O	Differential USB 3.0/31 GEN 1 signal B for position 2 connection
19	B2p	I/O	Differential USB 3.0/31 GEN 1 signal B for position 2 connection
20	A2n	I/O	Differential USB 3.0/31 GEN 1 signal A for position 2 connection
21	A2p	I/O	Differential USB 3.0/31 GEN 1 signal A for position 2 connection
			Tri-level input pin to indicate I ² C address or pin control mode:
22	ADDR	I	ADDR is floating – Pin control mode;
			ADDR=VDD $-I^2C$ enabled with ADDR bit 6 equal to 1;
			ADDR=GND – I ² C enabled with ADDR bit 6 equal to 0
23	VBUSDET	I	VBUS detection
			I ² C communication data signal.
			Dual function as open drain Type-C Current Mode Detect 1 in pin
			control mode when port is a device;
24	SDA/OUT1	I/O	OUT2 OUT1 Current Mode
			Hi-Z Hi-Z Default
			Hi-Z Low Medium
			Low Low High
Thermal Pad	GND	Ground	Ground

PI5USB30213-Typical Application Circuit

*PI2EQX502T

PI2EQX502T detail circuit is avaliable at Pericom website: http://www.pericom.com/products/redriver-repeater-ic-*signal-conditioners/part/PI2EQX502T

*Note 1: USB 3.1 spec requires the TX signals are AC coupled.

RX signals are reserved AC coupling to support non-compliant Type-C devices.

Maximum Ratings

Storage Temperature	-65°C to+150°C
Junction Temperature	125 °C
Supply Voltage from Battery/Baseband	
Switch I/O Voltage USB	-0.5V to +3V
ID Pin Sink current	10mA
ESD: HBM all pins	2000V
CC1/CC2Pin Sink Current	3mA
VBUSDET Pin Sink Current	0.1mA
Continuous Output Current (CC1, CC2)	Internally limited

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Symbol	Parameter	Min.	Max.	Units
$V_{ m DD}$	Battery Supply Voltage	2.7	5.5	V
V_{BUS}	System VBUS Voltage	4	28	V
V_{BAT_TH}	Battery Supply Under-Voltage Lockout, falling edge	2.2	2.65	V
V_{CONN}	VCONN Supply Voltage Range	2.7	5.5	V
V_{SWCM}	Switch I/O Common Mode Voltage	0	2	V
V_{IH}	High level input voltage (SCL, SDA, ENB)	1.05		V
V_{IL}	Low level input voltage (SCL, SDA, ENB)		0.4	V
V3 _{IH}	High level input voltage (ADDR,PORT)	VDD-0.4		V
V3 _{IL}	Low level input voltage (ADDR,PORT)		0.4	V
V_{IN_CC12}	CC1, CC2 input voltage ⁽¹⁾		VDD+0.5	V
$V_{IN_VBUSDET}$	VBUSDET input voltage ⁽²⁾		4.5	V
T_{A}	Operating Temperature	-40	85	°C
I_{CC1}	Continuous output current, CC1	0	400	mA
I_{CC2}	Continuous output current, CC2	0	400	mA

DC Electrical Characteristics

Min and Max apply for T_A between -40°C to 85°C and T_J up to +125°C (unless otherwise noted). Typical values are referenced to $V_{DD}\!=\!3.6V,~T_A\!=\!+25^\circ\text{C}$

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units	
USB Supe	rSpeed Switches (Axp, Axn, Bxp, Bxn)						
R _{SSON} ⁽¹⁾	USB3.0/3.1 Gen 1 SS TX/RX Switch On-Resistance	$I_{LOAD} = -8mA, V_{in} = 0V$	-	6	9	Ω	
R _{SSBIAS}	USB3.0/3.1 Gen 1 DC Bias Resistance to Ground		-	200	ı	kΩ	
CC1/CC2	CC1/CC2 Configuration(Device mode, SNK)						
R_{D}	Device mode pull down resistor		4.6	5.1	5.6	kΩ	
V_{TH3_SNK}	High current mode entry threshold		1.16	1.23	1.31	V	
V_{TH2_SNK}	Medium current mode entry threshold		0.61	0.66	0.70	V	
V_{TH1_SNK}	Default current mode entry threshold		0.15	0.2	0.25	V	
CC1/CC2	Configuration(Host mode, SRC)						
		Default current mode	64	80	96		
I_P	Host mode pull up current source	Medium current mode (1.5A)	166	180	194	μΑ	
		High current mode (3A)	304	330	356		
VBUS Detection							
V _{VBUS}	VBUS detection threshold	Rvbus=910kohm	2.5	3.0	4.0	V	
VCONN			•				
R _{VCONN}	VCONN switch on-resistance	$I_{LOAD} = 100 \text{mA}, V_{CONN} = 5V$	-	0.5	0.6	Ω	

4

⁽¹⁾ CC1 and CC2 are internally clamped to maximum (VDD, VCONN) +1.0V (typ.) (2) VBUSDET is internally clamped to ~5.5V

I _{VCONN} @ 80% V _{CONN}	VCONN output current at 80% VCONN	V _{CONN} = 5V, Vcc1 or Vcc2=4.5V	500	570	650	mA
I_{TRIP}	VCONN over current protection threshold	$V_{\text{CONN}} = 2.7 \text{V} - 5.0 \text{V}$	500	700	975	mA
V _{OVP}	VCONN over voltage protection		5.8	6.0	6.2	V
Host Inter	face Pins (INTB,ID,OUT1,OUT2,OUT3)					
V _{OL}	Output Low Voltage at 1.6mA Sink current(Open-Drain)		0	-	0.4	V
I _{OFF}	Off-state leakage current	V _{INTB.ID/ID/OUT1/OUT2/OUT3}	-	-	1	μΑ
Input Cor	trol Pins (ENB, ADDR, PORT, SCL, SDA	A)				
I_{IH}	High-level input current		-5	-	5	μΑ
I_{IL}	Low-level input current		-5	-	5	μΑ
Current (Consumption					
	operating current, Device mode	SNK connects to SRC	-	200	300	μΑ
I_{DD}	operating current, Host mode	SRC connects to SNK Default current mode	-	280	400	μΑ
I_{DEV_STBY}	Device mode standby current	V _{DD} =3.6V, Floating CC1 and CC2	-	45	65	μΑ
I _{DUAL STBY}	Dual-Role mode standby current	V _{DD} =3.6V, Floating CC1 and CC2	-	55	75	μΑ
I _{HOST_STBY}	Host mode standby current	V _{DD} =3.6V, Floating CC1 and CC2		65	85	μΑ
I _{DISABLE}	Chip is disabled	ENB=VDD	-	-	5	μΑ
Thermal	Shutdown					
T_{OTP}	Thermal shutdown threshold		-	155	-	°C
Thys	Thermal shutdown hysteresis			20	-	°C

Note

AC Electrical Characteristics

Min and Max apply for T_A between -40°C to 85°C and T_J up to +125°C (unless otherwise noted). Typical values are referenced to T_A =+25°C, V_{DD} =3.8V.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BW_{USB}	-3dB Differential Bandwidth of USB channel		-	8	-	GHz
I_{L}	Differential insertion loss		-	-0.9	-	dB
R_{L}	Differential return loss	f=2.5GHz, Vcm=0V	-	-15	-	dB
X_{TALK}	Differential crosstalk		-	-30	-	dB
Ton	Turn-On Time		-	20	-	μs
T_{off}	Turn-Off Time		-	1	-	us

Capacitance $(T_A = 0^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
C_{ONUSB}	TXn+, TXn- On Capacitance (USB Mode)		1	1.5	1	pF
Coff	TXn+, TXn- OFF Capacitance (USB Mode)			1	-	рF

I²C AC Electrical Characteristics

Symbol	Donomoton	Fast Mode (Fast Mode (400kHz)		
Symbol	Parameter	Min.	Max.	Units	
f_{SCL}	SCL Clock Frequency	0	400	kHz	
t _{HDSTA}	Hold Time (Repeated) START Condition	0.6	-	μs	
$t_{ m LOW}$	LOW Period of SCL Clock	1.3	-	μs	
t _{HIGH}	HIGH Period of SCL Clock	0.6	-	μs	
t _{SETSTA}	Set-up Time for Repeated START Condition	0.6	-	μs	
t _{HDDAT}	Data Hold Time	0	0.9	μs	
T_{SUDAT}	Data Set-up Time	250	-	ns	
$t_{\rm r}$	Rise Time of SDA and SCL Signals	-	300		
$t_{ m f}$	Fall Time of SDA and SCL Signals	-	300	ns	
t_{SETSTO}	Set-up Time for STOP Condition	0.6	-	μs	
t _{BUF}	Bus-Free Time between STOP and START Conditions	1.3	-	μs	
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns	

PI5 USB30213 Datasheet Number DS40461 Rev 1-2

www.diodes.com

12/1/2017 Diodes Incororated

⁽¹⁾ On-resistance is the voltage drop between the two terminals at the indicated current through the switch.

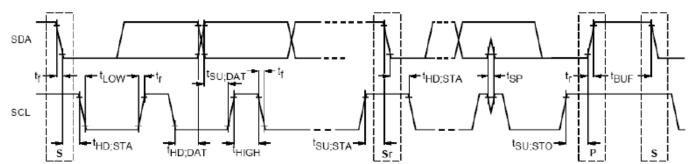
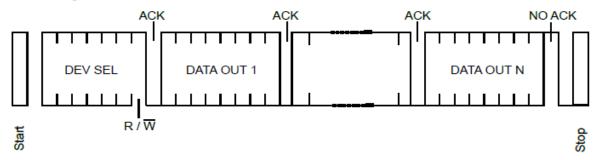
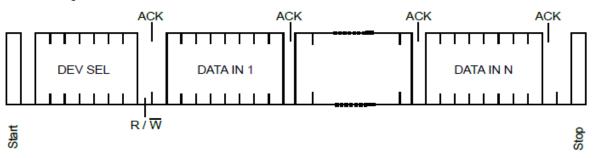


Figure 3. Definition of Timing for Full-Speed Mode Devices on the I²C Bus

Table 1. I²C Slave Address


Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address(ADDR=1)	Q	0	1	0	1	1	0	1	R/W
Slave Address (ADDR=0)	o	0	0	0	1	1	0	1	R/W



I²C Data Transfer

1. Read Sequence

2. Write Sequence

Note:

PI5USB30213 does not have offset byte. All registers must be read or written sequentially from 0x00. For example, in order to read address 0x04, PI5USB30213 I2C registers must be read sequentially from 0x01, 0x02, 0x03 to 0x04. In order to write address 0x02, it must be written sequentially from 0x01 to 0x02.

Detailed Description

ADDR

ADDR is a tri-level input pin to indicate I2C or pin control (or GPIO) mode. When ADDR pin is floating, the part is set to pin control mode. When ADDR is set to VDD or GND, I2C mode is enabled, and bit 6 of I2C address is equal to 1 or 0 according to ADDR set to VDD or GND (see Table 1: I2C Slave Address).

Configuration

The PI5USB30213 requires minimal configuration for proper detection and reporting. Write register 0x02 (Control Register) to configure different charging profiles and port settings.

Processor Communication

Typical communication steps between the processor and the PISUSB30213 during plug detection are:

- 1. INTB asserted LOW, indicating changes in register 0x03 (Interrupt register) or register 0x04 (CC status register).
- 2. Processor reads Interrupt registers to determine which event occurred. Interrupt Register (0x03) indicates if an attach or detach event was detected. All interrupt flags in Interrupt Register (0x03) will be cleared after the I²C read action. INTB will become hi-z again after the clearance of interrupt flags.
- 3. Processor reads CC Status Register (0x04) to determine plugin details and charging profile. Processor can configure the power and USB channels according to information in CC Status Register.

Interrupts

The baseband processor recognizes interrupt signals by observing the INTB signal, which is active LOW. Interrupts are masked upon bit 0 of Control Register 0x02 (Interrupt Mask Bit). After the Interrupt Mask Bit is cleared by the baseband processor, the INTB pin is hi-z in preparation for a future interrupt. When an interruptible event occurs, INTB transitions LOW and returns hi-z when the processor reads the Interrupt Register (0x03). Subsequent to the initial power up or reset; if the processor writes a "1" to Interrupt Mask Bit when the system is already powered up, the INTB pin stays hi-z and ignores all interrupts until the Interrupt Mask Bit is cleared.

Besides monitoring the I²C registers, the system can also monitor ID pin and VBUS for connector status. If the port is configured as a device (or dual-role acting as device), VBUS will go to 5V when host attachment is detected. If the port is configured as a host (or dual-role acting as host), ID pin will pull low when device attachment is detected, and system should assert VBUS.

Port Setting (Host/Device/Dual-Role)

When power is applied to VDD, an internal Power-On Reset (POR) holds the PI5USB30213 in a reset condition until VDD has reached 2.7V. At that point, the reset condition is released and the PI5USB30213 registers and I^2 C-bus state machine will initialize to their default states. [2:1] of Control Register (0x02) are initialized according to the PORT pin setting (see Table 3 I^2 C Register Table). Type-C connector can be configured as host, device or dual-role port per the register. After power up, the port setting can still be changed by I2C writes to Bits [2:1] of Control Register (0x02). Thereafter, VDD must be lowered below 1.0V to reset the device (both registers and I^2 C-bus state machine).

PI5USB30213 connects current sources to CC1 and CC2 when operating in host mode. It will also set the current level according to the charging current setting. In device mode, PI5USB30213 will connect two integrated resistor Rd1 and Rd2 to CC1 and CC2 respectively. Dual-Role mode enables CC1 and CC2 toggle between host mode and device mode alternatively every 50ms. The toggling will stop after connection is made and role negotiated.

Current Mode Setting and Detection

Type-C connector can be configured as different current modes per CC1/CC2 setting. Host mode (or dual role acting as Host) allows the system to configure between high current mode (3A), medium current mode (1.5A) and default current mode. Different current modes can be set by writing control register (x02h). When in Device mode (or dual role acting as device), CC1/CC2 pins allow the system to detect the host charging capability. The charging capability is reported in CC Status Register (0x04) which can help the system configure the charging current accordingly.

ID

When PI5USB30213 is configured as host mode (or dual role acting as host), ID pin will be pulled low when a device is attached to the type-C connector. The ID pin will work as interrupt signal to acknowledge system when there is device attachment. It should be noted the ID pin will not be driven low when an audio or debug accessory is detected, and ID pin will always stay hi-z when port is in device mode.

Audio and Debug Accessory

PI5USB30213 can detect Audio or Debug Accessory attachment as per CC1/CC2 setting. This is reported in CC Status Register (0x04) to help systemconfigure Audio Adapter Accessory and Debug Accessory Mode accordingly.

VBUS Detection

PI5USB30213 detects VBUS to determine the attached state when port is a device. A 910kohm +/- 5% is required to connect VBUS of the connector to VBUSDET input pin to protect the IC from the possible high voltage of VBUS during alternative mode.

ENB

ENB is an active low enable input pin. When ENB pin is high, part is in disable and low power state. All outputs, with the exception of CC1, CC2, SCL & SDA are in High-Z state. CC1 and CC2 pins are pulled low with resistors Rd in disable state. I²C port will also be reset during disable state. SCL & SDA are still functional when the part is disable and ADDR is not floating. I2C port will also reset during every transition (rising or falling edge) of ENB. Connection State will also be reset and forced to be "DISABLED" state. However, disable has no effect on the value of Register 02H (Control).

When ENB pin is low, part is enabled. The connection state will activate and detection will restart.

Dead Battery startup

PI5USB30213 ensures dead battery charging when VDD=0V. Both CC1 and CC2 will be pulled down when VDD=0V. Such configuration helps other host port detect the dead battery port as a device mode port and enable charging through VBUS.

VCONN Power Path at CC1/CC2 Pin

PI5USB30213 offers low-resistance switch path between CC1/CC2 to VCONN pin for powering accessories or active cables. There are over-voltage, over-current and thermal protections online to protect the system from fault connection.

VCONN Fault Condition Trigger and Recover

Over-current protection is online in PI5USB30213 to protect VCONN from being drawn a continuous current exceeding 700mA. Graph below further describes the characteristic of the over-current protection scheme. If the voltage at CC1/CC2 is lower than ~1.8V, the current limit will further be reduced down to 200mA. When the current limit is hit (OCP event), PI5USB30213 pulls low INTB pin to acknowledge the processor a fault condition happened.

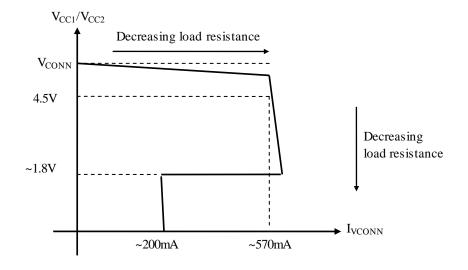


Figure 4. Output Voltage vs. Current Limit Threshold

Power Delivery Communication

USB Power Delivery is a feature on the USB Type-C connector. When *USB PD* is implemented, *USB PD* Bi-phase Mark Coded (BMC) carried on the CC wire shall be used for *USB PD* communications between USB Type-C ports.

At attach, VBUS shall be operationally stable prior to initiating *USB PD* communications. As a UFP may wait for 200msec to establish a successful connection after VBUS is detected. USB PD communications from DFP should be initiated at least 200msec after VBUS is turned on and stable. Otherwise, the connection may not be successfully established until USB PD communication is finished.

Pin Control Functional Description

Type-C connector port setting (PORT)

Type-C connector can be configured as different ports by changing PORT pin voltage level.

Table 2A. Port Setting

Port setting	PORT
Device (SNK)	GND
Dual-role port (DRP) with Try.SNK	No Connection
Host (SRC)	VDD

Type-C connector current mode detection (OUT1, OUT2)

Type-C connector can detect different host current modes and other accessories per CC1/CC2 setting. When PI5USB30213 operates in device mode (or dual role mode acting as device), it detects CC1/CC2 status to determine host charging current modes and reports to the system using OUT1 and OUT2 pins. OUT1 and OUT2 will always stay hi-z unless medium or high current mode is detected.

Table 2B. Current Mode Detection

	OUT2	OUT1
Default current mode	Hi-Z	Hi-Z
Medium current mode (1.5A)	Hi-Z	Low
High current mode (3A)	Low	Low

Type-C Connector current mode setting in host mode

When PI5USB30213 is configured as a host, the current mode can only be set to Default Current Mode(current source Ip=80uA). I2C control is required to set current mode to 1.5A or 3A.

Audio Adapter Accessory Detection (OUT3)

PI5USB30213 detects analog audio adapter attachment as per CC1/CC2 setting. This is reported by the OUT3 pin. OUT3 will be pulled low when an analog audio adapter attachment is detected. Otherwise, OUT3 will stay hi-z.

Table 2C. Audio Adapter Accessory Detection

Audio Accessory	OUT3
Detected	Low
Not Detected	Hi-Z

ADDR, ID, ENB, and Dead Battery Startup

Functionality of the ADDR, ID, and ENB pins are the same for pin control or I2C control modes. Dead Battery Startup operation is also the same for pin control and I2C control modes. Please refer to previous section for detail description.

Table 3. I²C Register

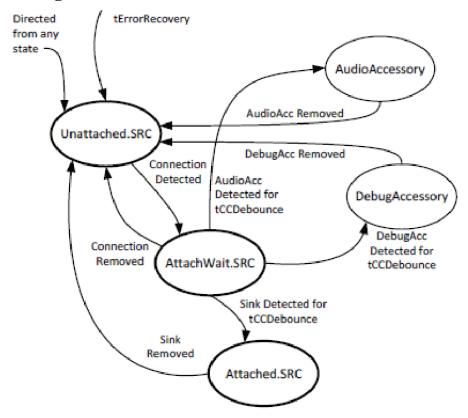
	5. I'C Reg		D 6 1/77	TD.
Address	Name	Description	Default Value	Туре
0x01	Device ID	Bits [7:3] = Version ID	00h	R
		00000 = Product version		
		Bits [2:0] = Vendor ID(Pericom)		
		000 = Pericom		
0x02	Control	Bit 7 = Powersaving	00h	R/W
		0 = Enable/Active state 1 = Disable and low power state In Disable and low power state, all outputs of PI5USB30213, with the exception of CC1 and CC2 pins, are in High-Z State. CC1 and CC2 pins	Upon first enable, Bits [2:1] are initialized according to PORT pin setting	
		are pulled low with resistor Rd.	as follows:	
		Bits [6] = Dual role 2 Try.SRC or Try.SNK setting	PORT Bits pin [2:1]	
		0 = Enable Try .SRC supported 1 = Enable Try .SNC supported	initial settins	
		Bits [5] = Accessory Detection in Device Mode	GND 00 VDD 01 Float 10	
		0 = Disable		
		1 = Enable	Note: This initialization only	
		Bits [4:3] = Charging current mode	happens once	
		System can set the charging current mode when port is a host or dual role	when ENB is first	
		acting as host. These bits are ignored when port is a device or dual role acting as device.	time pulled low after	
		00 = Default current mode	PI5USB30213 is	
		01 = Medium current mode (1.5A)	powered on Bits [2:1] can be	
		10 = High current mode (3A)	[2:1] can be changed by I ² C command	
		Bits [2:1] = Port setting	afterwards.	
		System can set the role of the port.	arver in arcasi	
		00 = Device (SNK) 01 = Host (SRC)		
		10 = Dual Role (DRP) 11 = Dual Role 2 (DRP) where Try.SRC or Try.SNC is supported		
		Bit 0 = Interrupt Mask		
		INTB pin is used to acknowledge system if there is any interrupt events triggered. When this bit is set to 0, INTB pin is pulled low when an interrupt event occur. When this bit is set to 1, INTB pin ignores all interrupt and remain High-Z.		
		0 = Do not mask interrupt 1 = Mask interrupt		
0x03	Interrupt	Bit 7 = Fault condition recovery	00h	Clearable
	1	This bit indicates if VCONN recover from fault conditions including OCP, OVP, OTP		read only. Bits[7:0] are
		0 = Fault event not recovered 1 = Fault event recovered		cleared when Byte 3 is read.
		Bit 6 = OCP event VCONN over-current protection indicator		
		0 = No OCP event 1 = OCP event detected		

Address	Name	Description	Default Value	Type
0x03	Interrupt	Description Bit 5 = OVP event	Detault value	Type
0.003	interrupt	VCONN over-voltage protection indicator		
		0 = No OVP event 1 = OVP event detected		
		I = OVP event detected		
		Bit 4 = = Reserved. Read 0's.		
		Bit 3 = OTP event VCONN over-temperature protection indicator		
		VCOIVIV OVER-temperature protection indicator		
		0 = No OTP event		
		1 = OTP event detected		
		Bit 2 = Fault Ocurring.		
		0 = No fault is occurring		
		1 = Fault(s) is occurring		
		*This bit will be set or clear per real time condition. And won't be		
		cleared by I2C reading. No interrupt will be reported by the change		
		of this bit.		
		Bit 1 = Detach event		
		When this bit is set to 1, it indicates the unplug action. The port changes		
		from attached state (Attached.SNK, Attached.SRC, AudioAccessory or DebugAccessory state) to unattached state.		
		Debug recessory state) to unartached state.		
		Bit $0 = Attach event$		
		When this bit is set to 1, it indicates the plug action. The port changes from unattached state to attached state.		
0x04	CC status	Bit 7 = VBUS detection	00h	R
		This bit reports VBUS status when PI5USB30213 is in device mode, dual		
		role mode acting as device or accessory mode.		
		0 = VBUS not detected		
		1 = VBUS detected		
		Bits [6:5] = Charging current detection These bits report the detected host charging current status when port is a		
		device or dual role acting as device.		
		00 = Standby 01 = Default current mode		
		10 = Medium current mode (1.5A)		
		11 = High current mode (3A)		
		Bits [4:2] = Attached port status		
		000 0 1		
		000 = Standby 001 = Device		
		010 = Host		
		011 = Audio Adapter Accessory		
		100 = Debug Accessory		
		Bits [1:0] = Plug polarity		
		00 = Standby		
		01 = CC1 makes connection		
		10 = CC2 makes connection		
		11 = Undetermined (e.g. AudioAccessory, DebugAccessory or other	i	1

Register Table

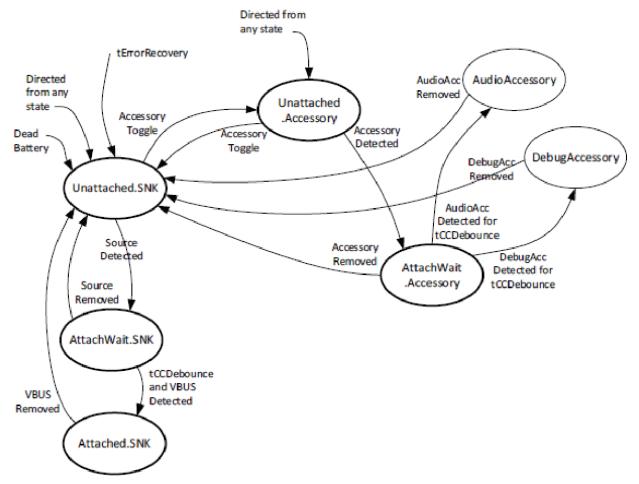
Address	Register	Туре	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01H	Device ID	Read	00000000		Version ID: 00000				Vendor ID(Pericom): 000		
		Control Read/ Write 0000000		Powersaving	Dual-role 2	Accessory Detection in Device Mode	Charging Current mode (Host/Dual-role)		Port setting		Interrupt Mask
02H	Control		00000000	0: No Powersaving 1: Powersaving	0: Try.SRC supported 1: Try.SNK supported	0: Disable 1: Enable	00: Default 01: Medium 10: High		00: Device 01: Host 10: Dual-role 11: Dual-role 2		0: Does not Mask Interrupts 1: Mask Interrupts
		errupt Read/ Clear		Fault Recovery	OCP Event	OVP Event		OTP Event	Fault Occurring*	Detach	Attach
03H Interrup	Interrupt		lead/ Clear 000000000	0: fault event not recovered	0: No OCP event	0: No OVP event	reserved	0: No OTP event	0: No fault is occurring	0: No	Interrupt
						1: fault event recovered	1: OCP event	1: OVP event	reserved	1: OTP event	1: Fault(s) is occurring
044	04H CC status	totus Pood	Read 00000000	VBUS detection (Port is a Device or in Accessory Mode)		urrent detection s a Device)	Attached Port Stat		itus Plug pola		polarity
04H C		Read		0: Vbus not detected 1: Vbus detected	00: Standby 01: Default 10: Medium 11: High		000: Standby 001: Device 010: Host 011: Audio 100: Debug Accessory		00: Standby 01: CC1 connected 10: CC2 connected 11: undetermined		

^{*}This bit will be set or clear per real time condition. And won't be cleared by I2C reading. No interrupt will be reported by the change of this bit.

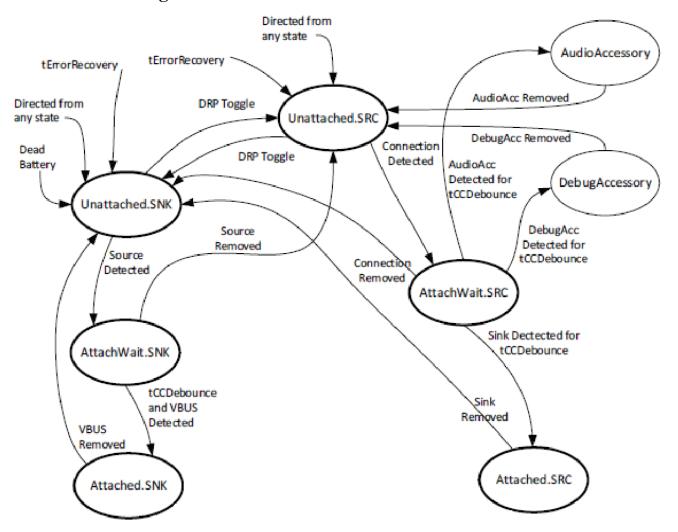

Upon first enable, Bit 1 and Bit 2 of register 02H are initialized according to the pin #3 PORT setting as follows:

Pin #3 Port Initial Connection	Bit 2 & Bit 1 of Register 02H initialization
PORT pin is floating – Dual role;	10
PORT pin =VDD - Host;	01
PORT pin =GND – Device	00

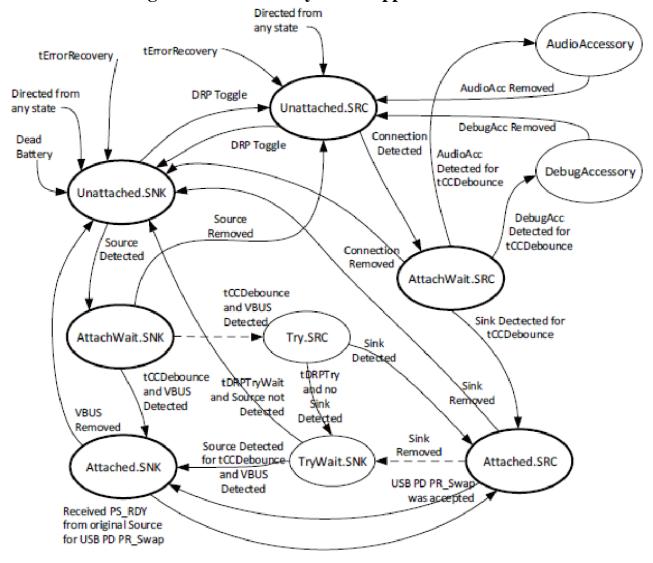
This initialization only happens once when ENB pin is first time pulled low after PI5USB30213 is powered on.. Bit 1 and Bit 2 of register 02H can be changed by I2C commands afterwards.

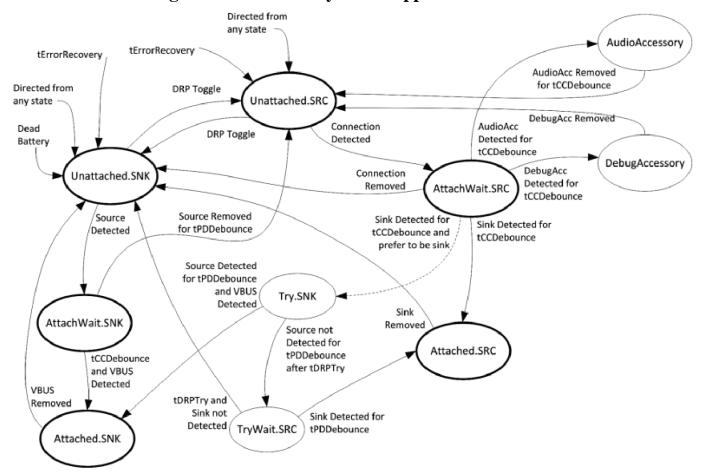


Connection State Diagram: SRC



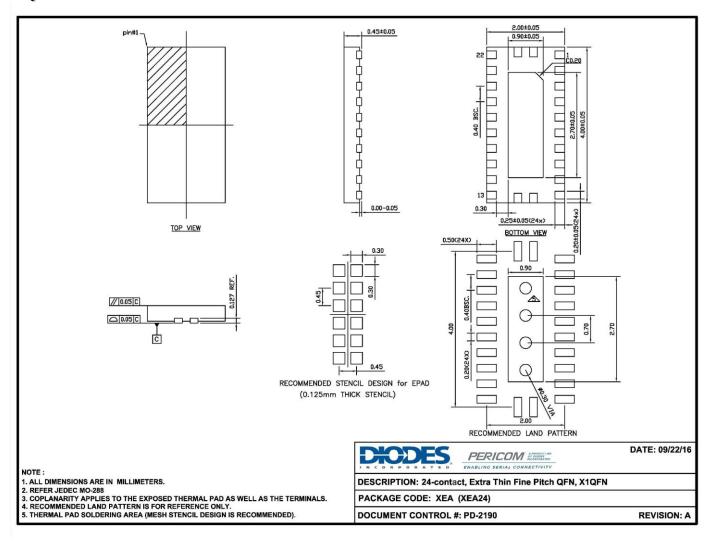
Connection State Diagram: SNK


Connection State Diagram: DRP



Connection State Diagram: DRP with Try.SRC Supported

Connection State Diagram: DRP with Try.SNK Supported



Mechanical Information

X1QFN 2 X 4 -24 Contact

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description			
PI5USB30213XEAEX ^{1,2,3}	XEA	24-contact, Extra Thin Fine Pitch QFN (X1QFN), Tape & Reel			

Note:

- $\bullet \qquad \text{Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/}\\$
- E = Pb-free and Green
- Adding X Suffix=Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF A NY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal in jury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform an be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

PI5USB30213XEAEX