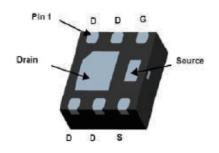


- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary


BVDSS	RDSON	ID
-30V	19mΩ	-10.0A

Description

The 30P10M is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 30P10M meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

DFN2X2-6L Pin Configuration

Absolute Maximum Ratings (TA=25°C unless otherwise specified)

Symbol	Parameter	Rating		Units
Symbol	Parameter	10s	Steady State	Units
V _{DS}	Drain-Source Voltage	-30		V
V _G S	Gate-Source Voltage	±20	±20	
l₀@Tc=25°C	0 " 0 " 1 0 1 1 1 1	-10		
I _D @T _C =100°C	Continuous Drain Current, V _{SS} @ -10V ¹	-8		A
Ідм	Pulsed Drain Current2	-36		
EAS	Single Pulse Avalanche Energy₃	25		mJ
las	Avalanche Current	-8		Α
P _D @T _C =25°C	Po@Tc=25°C Tetal Power Bioginetian		5	
P _D @T _A =25°C	Total Power Dissipation₄	4.2	1.67	W
Тѕтс	Storage Temperature Range -55 to 150		50	°C
TJ	Operating Junction Temperature Range	-55 to 150		

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient 1		30	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	V _S =0V , I _D =-250uA	-30			V
△ BV _{DSS} /△ T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , l _D =- 1mA		-0.022		V/°C
Dagger	Static Drain Source On Bosistance	V _{GS} =-10V , I _D =-15A		19	24	m O
RDS(ON)	Static Drain-Source On-Resistance2	V _{GS} =-4.5V , I _D =-10A		25	35	mΩ
VGS(th)	Gate Threshold Voltage		-1		-2.5	V
△ V _{GS(th)}	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =-250uA		4.6		mV/°C
		V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1	
Ipss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	uA
Igss	Gate-Source Leakage Current	$V_{GS} = \pm 25V$, $V_{DS} = 0V$			±100	nA
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		13		Ω
Qg	Total Gate Charge (-4.5V)	\\\ \ \ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\		48		
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V , I _D =- -15A		9.5		nC
Q_{gd}	Gate-Drain Charge			8		
Td(on)	Turn-On Delay Time			12		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V , R _G =3.3Ω , I _D =-15A		14		
Td(off)	Turn-Off Delay Time			190		ns
Tf	Fall Time			90		
Ciss	Input Capacitance	V _{DS} =-15V, V _{GS} =0V, f=1MHz		1150		
Coss	Output Capacitance			155		pF
Crss	Reverse Transfer Capacitance			139]

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current _{1,5}	V _G =V _D =0V , Force Current			-10	Α
Іѕм	Pulsed Source Current _{2,5}				-36	Α
VsD	Diode Forward Voltage2	V _{GS} =0V , I _S =-1A , T _J =25 °C			-1.2	V

Note:

- 1. 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- $3. The \ EAS\ data\ shows\ Max.\ rating\ .\ The\ test\ condition\ is\ V_{DD}=-25V, V_{GS}=-10V, L=0.1mH, IAS=-38A$
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Performance Characteristics

Figure 1: Output Characteristics

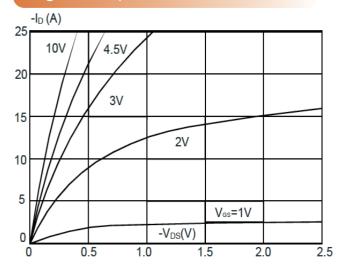
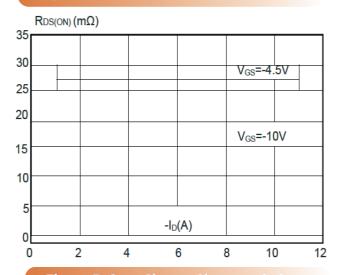



Figure 3:On-resistance vs. Drain Curren

Figure 5: Gate Charge Characteristics

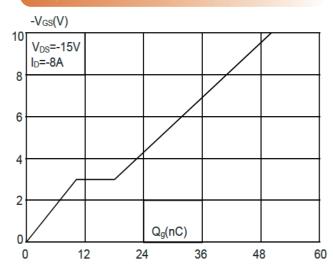


Figure 2: Typical Transfer Characteristic

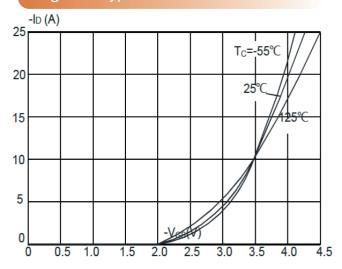
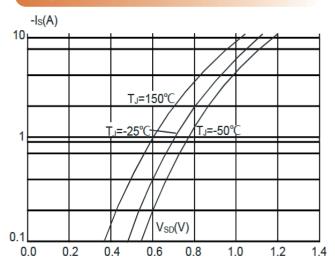
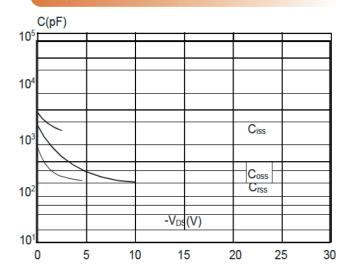




Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Performance Characteristics

Figure 7: Normalized Breakdown Voltag

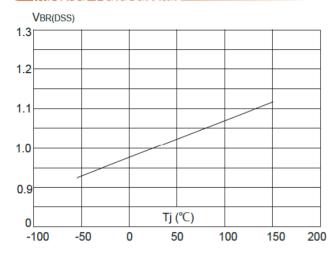


Figure 9: Maximum Safe Operating Area

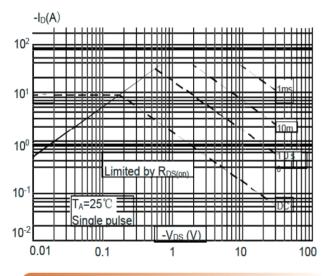


Figure 11: Maximum Effective Transient

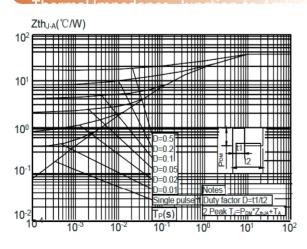


Figure 8:Normalized on Resistance vs

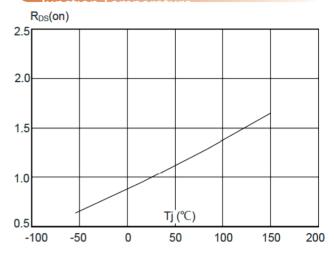
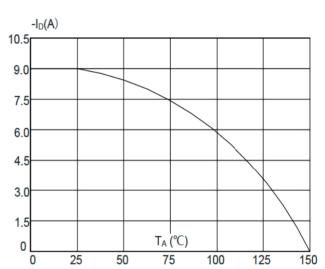



Figure 10: Maximum Continuous Drain C

Test Circuit

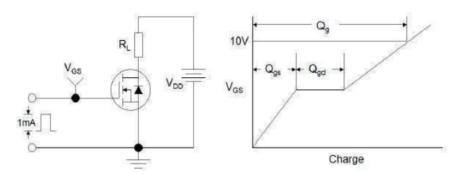


Figure1:Gate Charge Test Circuit & Waveform

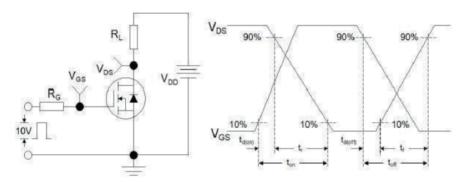


Figure 2: Resistive Switching Test Circuit & Waveforms

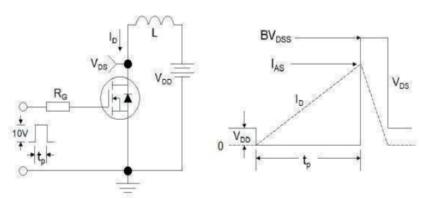
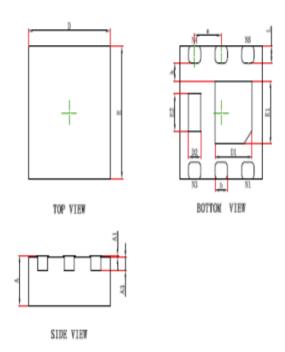



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

DFN2X2-6L Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Syllibol	Min.	Max.	Min.	Max.
Α	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.203	REF.	0.008	REF.
D	1.924	2.076	0.076	0.082
Е	1.924	2.076	0.076	0.082
D1	0.800	1.000	0.031	0.039
E1	0.850	1.050	0.033	0.041
D2	0.200	0.400	0.008	0.016
E2	0.460	0.460 0.660 0.018		0.026
k	0.200MIN.		0.008MIN.	
b	0.250	0.350	0.010	0.014
е	0.650TYP.		0.026	STYP.
L	0.174	0.326	0.007	0.013