

产品特性

- ●工作电流低
- 过充检测4.28V, 过充释放4.08V
- 过放检测2.4V, 过放释放3.0V
- ●过流检测0.15V, 短路电流检测1.3V
- ●充电器检测
- ●过电流保护复位电阻
- ●带自恢复功能
- 0V充电使能
- ●工作电压范围广
- 小封装: SOT23-6

应用: 单一锂电池保护电路。图1典型应用电路图

描述:

DW01是一个锂电池保护电路,为避免锂电池因过充电、过放电、电流过大导致电池寿命缩短或电池被损坏而设计的。它具有高精确度的电压检测与时间延迟电路。带 OV 充电功能,自恢复功能。不适用于无线和射频信号排布及屏蔽太差的产品,另请客户使用本产品前务必做成品整机验证。

功能框图

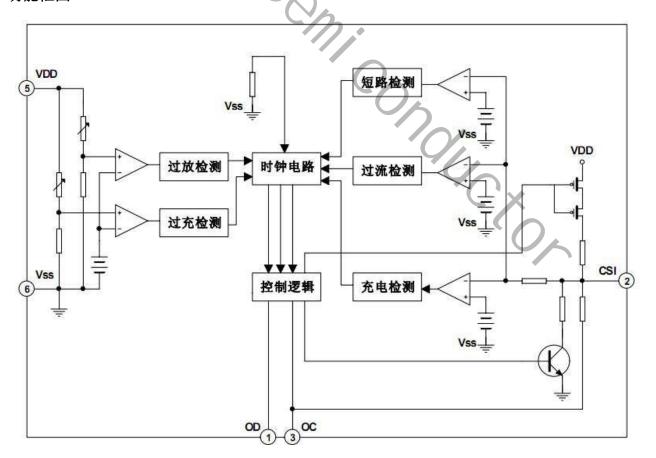


图2 功能框图

型号	材料情况	封装	工作环境温度范围	包装	
DW01	无卤 ^{推 1}	SOT23-6	-40 <i>℃</i> 至 85 ℃	编带卷盘 3000 颗/盘	

注 1: 是否需无铅无卤封装,以订单为准。

封装及引脚排布

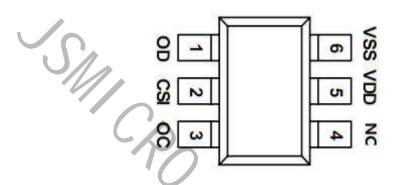


图 3 DW01的 SOT23-6 封装及引脚排布

引脚功能说明

引脚号	管脚名称	I/O	功能描述	
1	OD	O	放电控制 FET 门限连接管脚	
2	CSI	I/O	电流感应输入管脚, 充电器检测。	
3	OC	О	充电控制 FET 门限连接管脚。	
4	NC		无连接	
5	VDD	I	正电源输入管脚。	
6	VSS	I	负电源输入管脚。	
极限参数注2				

极限参数 注2

参数	符号	参数范围值	单位
电源电压	VDD	VSS-0.3~VSS+8	V
OC 输出管脚电压	VOC	VDD-15~VDD+0.3	V
OD 输出管脚电压	VOD	VSS-0.3~VDD+0.3	V
CSI 输入管脚电压	VCSI	VDD-15~VDD+0.3	V
工作温度	Topr	-40~+85	${\mathbb C}$
存储温度	Tstg	-40~+125	$^{\circ}$

注 2: "极限参数"是指工作点超出该参数,芯片有可能永久性损坏;工作点长时间接近极限参数,芯片可靠性有可能降 低。

电气特性参数 (如无特别说明, $T_a = 25$ \mathcal{C})

电【竹庄学数 (如儿付别说明,	1a - 25 C)						
参数	符号	测试条件	最小值	典型值	最大值	单位	
工作电压							
工作电压	VDD		1.5		8	V	
电流消耗							
工作电流	IDD	VDD=3.9V		4.0	6.0	uA	
检测电压							
过充电检测电压	VOCD		4.23	4.28	4.33	V	
过充电释放电压	VOCR		4.03	4.08	4.13	V	
过放电检测电压	VODL		2.30	2.40	2.50	V	
过放电释放电压	VODR		2.90	3.00	3.10	V	
过电流1检测电压	VOI1		0.12	0.15	0.18	V	
过电流2(短路电流)检测电压	VOI2	VDD=3.6V	0.80	1.30	1.75	V	
过电流复位电阻	Rshort	VDD=3.6V	50	100	150	ΚΩ	
充电器检测电压	УСН		-1.1	-0.7	-0.3	V	
迟延时间							
过充电检测迟延时间	TOC	VDD=3.6V~4.4V		80	200	ms	
过放电检测迟延时间	TOD	VDD=3.6V~2.0V		40	120	ms	
过电流1检测迟延时间	TOI1	VDD=3.6V		10	15	ms	
过电流2(短路电流)检测迟延时间	TOI2	VDD=3.6V	-	50	120	us	
其他							
OC管脚输出高电平电压	Voh1	()	VDD-0.1	VDD-0.02		V	
OC管脚输出低电平电压	Vol1	- 0	5	0.1	0.5	V	
OD管脚输出高电平电压	Voh2		VDD-0.1	VDD-0.02		V	
OD管脚输出低电平电压	Vol2		4/	0.1	0.5		

功能描述

●正常条件

如果VODL<VDD<VOCU,并且VCH<VCSI<VOI1,那么M1和M2都开启(见典型应用电路图)。此时充电和放电均可以正常进行。

●过充电状态

当从正常状态进入充电状态时,可以通过VDD检测到电池电压。当电池电压进入到这充电状态时,VDD 电压大于VOCU,迟延时间超过TOC,M2关闭。

●释放过充电状态

进入过记电状态后,要解除过记电状态,进入正常状态,有两种方法。1)如果电池自我放电,并且VDD<VOCR,M2开启,返回到正常状态。

2) 在移去充电器,连接负载后,如果VOCR<VDD<VOCU, VCSI>VOI1,M2开启,返回到正常模式。

●过放电检测

当由正常状态进入放电状态时,可以通过VDD检测到电池电压。当电池电压进入过放电状态时,VDD电压小于 VODL,迟延时间超过TOD,则M1关闭。

●释放断电模式

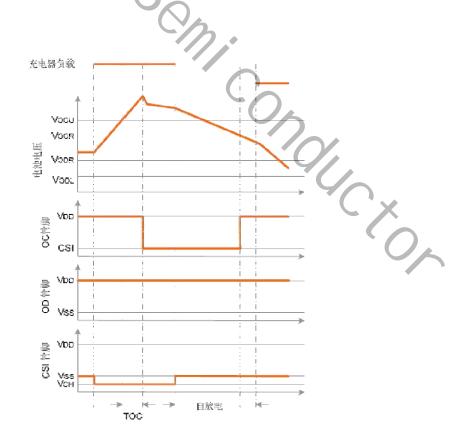
当电池在断电模式时,若连接入一个充电器,并且此时VCH<VCSI<VOI2, VDD<VODR, M1仍旧关闭,但是释 放断电模式。如果VDD>VODR, M1开启并返回到正常模式。或者当负载悬空, VDD电压恢复到VDD>VODR, M1开启并返回到正常模式(自恢复功能)。

●充电检测

如果在断电模式有一个充电器连接电池,电压将变为VCSI<VCH和VDD>VODL。M1开启并返回到正常模式。

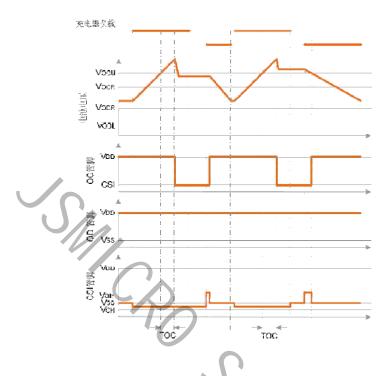
●过电流/短路电流检测

在正常模式下,当放电电流太大时,由CSI管脚检测到电压大于VOIX(VIO1或VIO2),并且迟延大于TOIX(TI01或TI02),则代表过电流(短路)状态。M1关闭,CSI通过内部电阻RCSIS拉到VSS。

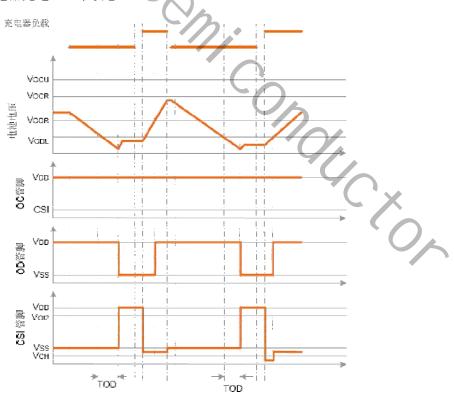

●释放过电流/短路电流状态

当保护电路保持在过电流/短路电流状态时,移去负载或介于VBAT+和VBAT-之间的阻抗大于500K Ω ,并且VCSI<VOI1,那么M1开启,并返回到正常条件。

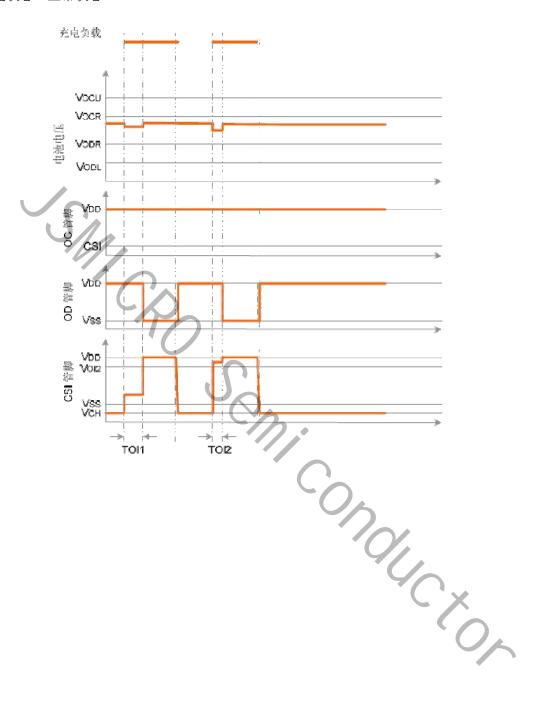
注: 当电池第一次接上保护电路时,这个电路可能不会进入正常模式,此时无法放电。如果产生这种现象,使 CSI 管脚电压等于VSS电压(将CSI与VSS短路或连接充电器),就可以进入正常模式。

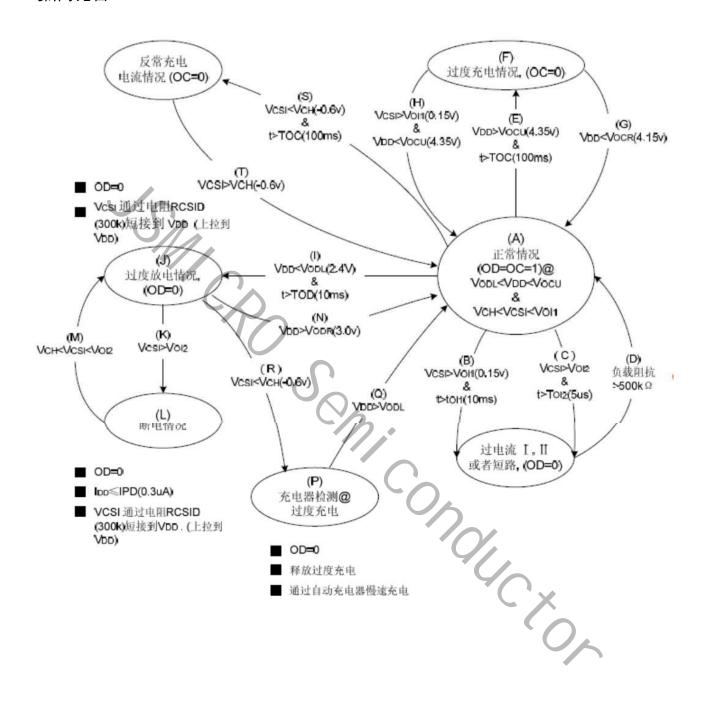

时序图


●过充电状态→自放电状态→正常状态

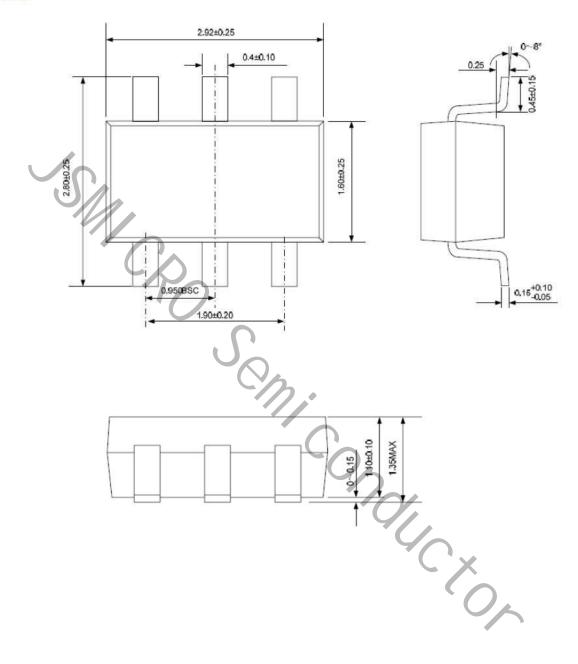


●过充电状态→负载放电→正常状态





●过充电状态→正常状态


操作状态图

封装尺寸与外形图(单位: mm)

SOT-23-6

