

Features

- Single-Supply Operation from +1.8V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 1.8MHz (Typ@25°C)
- Low Input Bias Current: 20pA (Typ@25°C)
- Low Offset Voltage: 30µV (Max@25°C)
- Quiescent Current: 180µA per Amplifier (Typ)
- Operating Temperature: -45°C ~ +125°C
- Zero Drift: 0.01µV/°C (Typ)
- Embedded RF Anti-EMI Filter

Applications

- Transducer Application
- Temperature Measurements
- Electronics Scales
- Handheld Test Equipment
- Battery-Powered Instrumentation

AD8551

SOT23-5

OUT 1

VSS 2

IN+ 3

5 VDD

4 IN

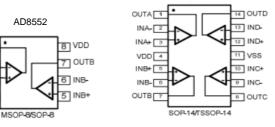


Figure 1. Pin Assignment Diagram

OUTA 1

INA- 2

INA+ 3

VSS 4

AD8551

SOP-8

NC 1

INA- 2

INA+ 3

VSS 4

8 NC

7 VDD

6 OUT

5 NC

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-45°C	+125°C		
Junction Temperature	+160)°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+260	0°C		
Package Thermal Resistance (T _A =+25℃)				
SOP-8, θ _{JA}	125°	C/W		
MSOP-8, θ _{JA}	216°	C/W		
SOT23-5, θ _{JA}	190°	190°C/W		
ESD Susceptibility	·			
НВМ	6K	6KV		
MM	400	400V		

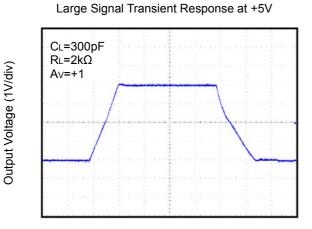
Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

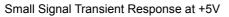
Package/Ordering Information

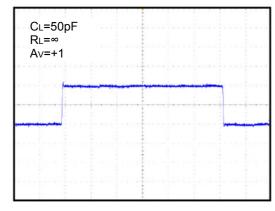
MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
AD8551	Single	AD8551A	SOT23-5	Tape and Reel,3000	8551
AD8551 Single		AD8551SR	SOP-8	Tape and Reel,4000	AD8551
AD8552 Dual		AD8552	SOP-8	Tape and Reel,4000	AD8552
		AD8552MR	MSOP-8	Tape and Reel,3000	AD8552
	AD8554TR	TSSOP-14	Tape and Reel,3000	AD8554	
AD8554 Quad		AD8554SR	SOP-14	Tape and Reel,2500	AD8554

Electrical Characteristics

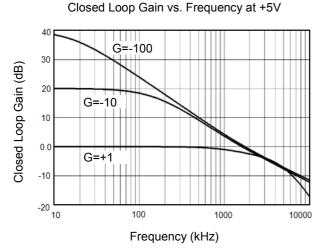
(V_S = +5V, V_{CM} = +2.5V, V_O = +2.5V, T_A = +25 $^\circ \! \mathbb{C}$, unless otherwise noted.)


PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS					
Input Offset Voltage (V _{OS})			1	30	μV
Input Bias Current (I _B)			20		pА
Input Offset Current (I _{OS})			10		pА
Common-Mode Rejection Ratio (CMRR)	$V_{CM} = 0V$ to 5V		110		dB
Large Signal Voltage Gain (A _{VO})	R_L = 10k Ω , V_O = 0.3V to 4.7V		145		dB
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)			10	50	nV/℃
OUTPUT CHARACTERISTICS		·			
	R_L = 100k Ω to - V _S		4.998		V
Output Voltage High (V _{OH})	R_L = 10k Ω to - V _S		4.994		V
	R_L = 100k Ω to + V _S		2		mV
Output Voltage Low (V _{OL})	R_L = 10k Ω to + V _S		5		mV
Short Circuit Limit (I _{SC})	R_L =10 Ω to - V _S		60		mA
Output Current (I _O)			65		mA
POWER SUPPLY					
Power Supply Rejection Ratio (PSRR)	V _S = 2.5V to 5.5V		115		dB
Quiescent Current (I _Q)	$V_0 = 0V, R_L = 0\Omega$		180		μA
DYNAMIC PERFORMANCE					
Gain-Bandwidth Product (GBP)	G = +100		1.8		MHz
Slew Rate (SR)	$R_L = 10k\Omega$		0.95		V/µs
Overload Recovery Time			0.10		ms
NOISE PERFORMANCE	•		•		•
Voltage Noise (e _n p-p)	0Hz to 10Hz		0.3		μV_{P-P}
Voltage Noise Density (en)	f = 1kHz		38		nV/\sqrt{Hz}

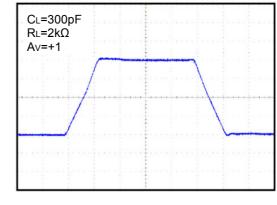

Output Voltage (500mV/div)


Output Voltage (50mV/div)

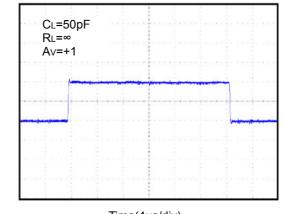
Typical Performance characteristics



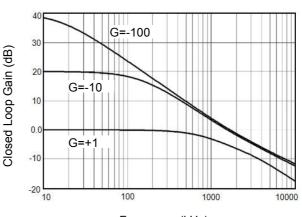
Time(4µs/div)



Time(4µs/div)

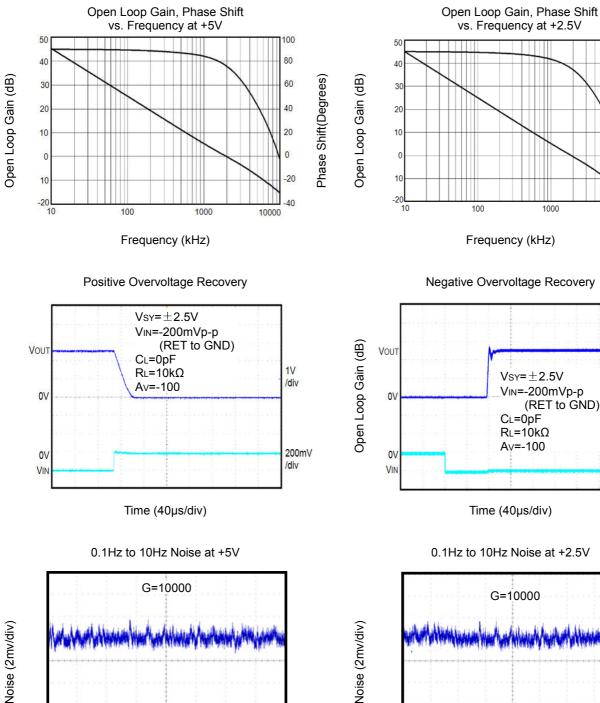


Large Signal Transient Response at +2.5V

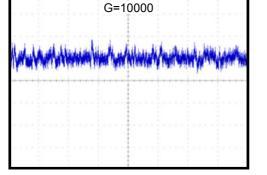

Time(2µs/div)

Time(4µs/div)

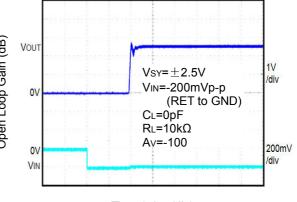
Closed Loop Gain vs. Frequency at +2.5V



Frequency (kHz)

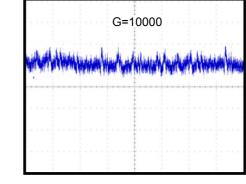

Output Voltage (50mV/div)

Typical Performance characteristics



Time (10s/div)

vs. Frequency at +2.5V 100 80 Phase Shift(Degrees) 60 40 20 20 -40 1000 10000


Frequency (kHz)

Negative Overvoltage Recovery

Time (40µs/div)

Time (10s/div)

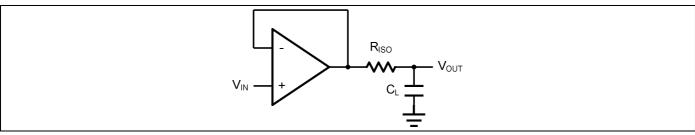


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

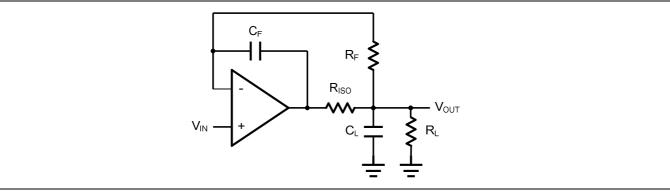


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using AD8551/2/4.

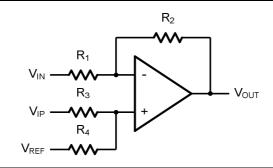


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{\rm OUT} = \frac{R_2}{R_1} (V_{\rm IP} - V_{\rm IN}) + V_{\rm REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_c=1/(2\pi R_3 C_1)$.

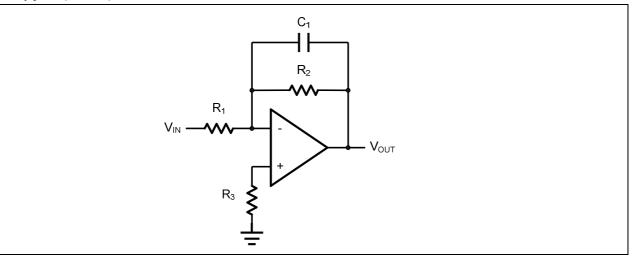


Figure 5. Low Pass Active Filter

Instrumentation Amplifier

The triple AD8551/2/4 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.

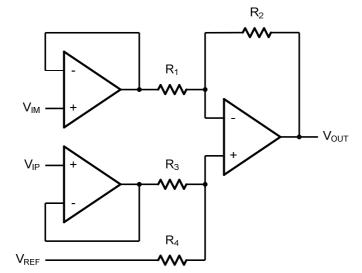
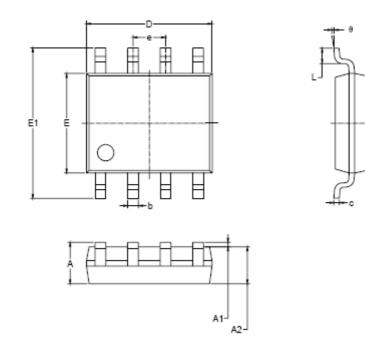
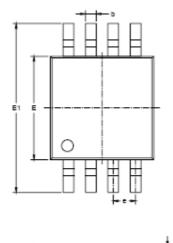



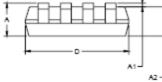
Figure 6. Instrument Amplifier

Package Information

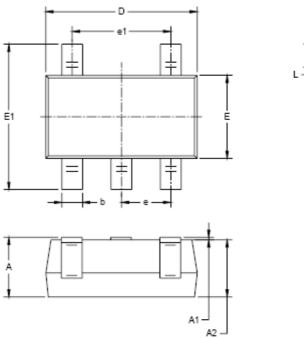
SOP-8



Symbol		nsions meters	Dimensions In Inches	
,	MIN	MAX	MIN	MAX
А	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
с	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	1.27 BSC		0.050	BSC
L	0.400	1.270	0.016	0.050
e	0°	8°	0°	8°


www.tokmas.com

MSOP-8


Symbol	Dimen In Milli		Dimensions In Inches		
	MIN	MAX	MIN	МАХ	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
с	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

θ

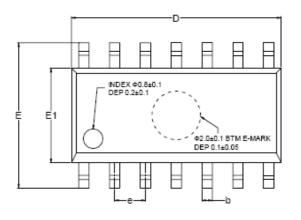
0.2

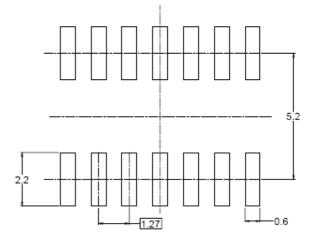
SOT23-5

θ

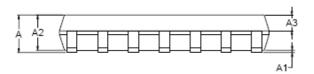
0°

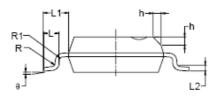
	-b =-e-=		-	•	
Dimensions Symbol In Millimeters			Dimensions In Inches		
0,111001	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037	BSC	
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
		-			


8°

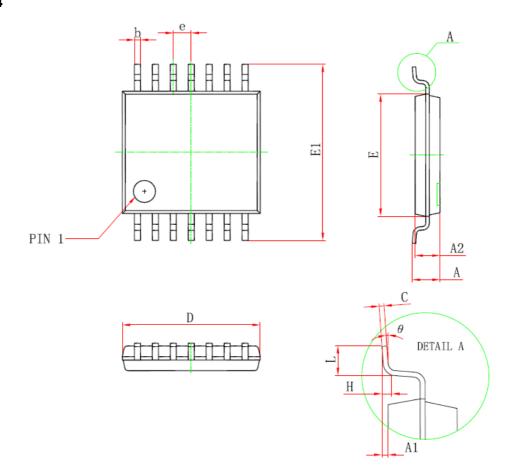

0°

8°




SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
E	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
е		1.27 BSC		0.050 BSC		
L	0.45		0.80	0.018		0.032
L1		1.04 REF			0.040 REF	
L2		0.25 BSC			0.01 BSC	
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°

TSSOP-14

See hal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
D	4.900	5.100	0.193	0.201	
E	4.300	4.500	0.169	0.177	
b	0.190	0.300	0.007	0.012	
с	0.090	0.200	0.004	0.008	
E1	6.250	6.550	0.246	0.258	
А		1.200		0.047	
A2	0.800	1.000	0.031	0.039	
A1	0.050	0.150	0.002	0.006	
e	0.65 (BSC)		0.026	(BSC)	
L	0.500	0.700	0.020	0.028	
H	0.25(TYP)		0.01(TYP)	
θ	1°	7°	1°	7 °	