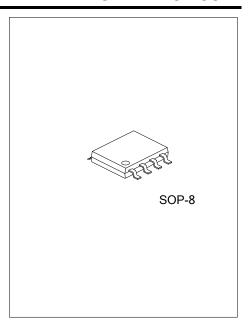
UNISONIC TECHNOLOGIES CO., LTD

OP07C

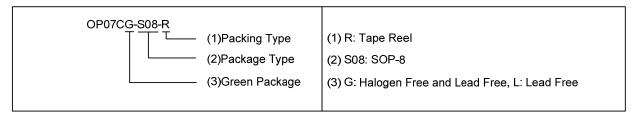

Preliminary

LINEAR INTEGRATED CIRCUIT

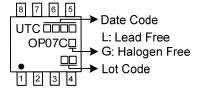
VERY LOW OFFSET VOLTAGE SINGLE OPERATIONAL **AMPLIFIER**

DESCRIPTION

The **OP07C** offers low offset and long-term stability by means of a low-noise, chopperless, bipolar-input-transistor amplifier circuit. For most applications, external components are not required for offset nulling and frequency compensation. The true differential input, with a wide input-voltage range and outstanding common-mode rejection, provides maximum flexibility and performance in high-noise environments and in noninverting applications. Low bias currents and extremely high input impedances are maintained over the entire temperature range.

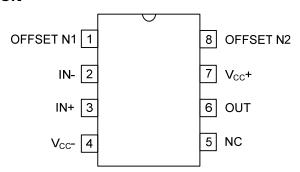


FEATURES


- * Low Noise
- * No External Components Required
- * Replace Chopper Amplifiers at a Lower Cost
- * Wide Input-Voltage Range: 0 to ±14V (Typ.)
- * Wide Supply-Voltage Range: ±3V to ±18V

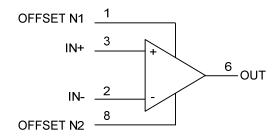
ORDERING INFORMATION

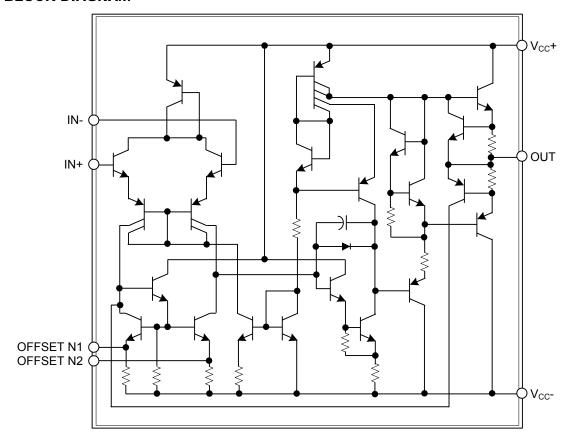
Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
OP07CL-S08-R	OP07CG-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6 QW-R105-062.a


PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION				
1	OFFSET N1	ternal input offset voltage adjustment				
2	IN-	Inverting input				
3	IN+	Noninverting input				
4	V _{CC} -	Negative supply				
5	NC	Do not connect				
6	OUT	Output				
7	V _{CC} +	Positive supply				
8	OFFSET N2	External input offset voltage adjustment				

SIMPLIFIED SCHEMATIC

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

(Over operating free-air temperature range unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Cumply Voltage	V _{CC} +	0 ~ 22 (Note 2)	V
Supply Voltage	V _{CC} -	-22 ~ 0 (Note 2)	V
Differential Input Voltage (Note 3)		±30	V
Input Voltage Range (Either Input) (Note 4)	VI	±22	V
Duration of Output Short Circuit (Note 5)		Unlimitde	
Operating Virtual-Junction Temperature	TJ	+150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. All voltage values, unless otherwise noted, are with respect to the midpoint between $V_{CC}+$ and $V_{CC}-$.
 - 3. Differential voltages are at IN+ with respect to IN-.
 - 4. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15V, whichever is less.
 - 5. The output may be shorted to ground or to either power supply.

■ RECOMMENDED OPERATING CONDITIONS

(Over operating free-air temperature range unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC} +	3 ~ 18	V
Supply Voltage	V _{CC} -	-3 ~ -18	٧
Common-Mode Input Voltage (V _{CC} ±=±15 V)	V _{IC}	-13 ~ 13	V
Operating Free-Air Temperature	T _A	-40 ~ +85	°C

■ ELECTRICAL CHARACTERISTICS

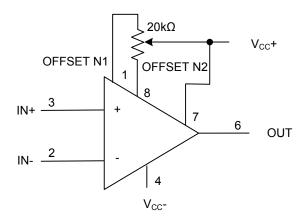
(At specified free-air temperature, V_{CC}±=±15V, unless otherwise specified) (Note 1)

(At specifica free-all temperatur	C, V (() 1 - 1 1	ov, arriess ourierwise specif	ica) (Note 1)				
PARAMETER	SYMBOL	TEST CONDITIONS	T _A (Note 2)	MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{IO}	V _O =0V, R _S =50Ω	25°C		60		μV
			0°C~70°C		85		μV
Long-Term Drift of Input Offset Voltage		(Note 1)			0.4		μV/mo
Offset Adjustment Range		$R_S=20k\Omega$	25°C		±4		mV
Input Offset Current			25°C		0.8		nA
Input Offset Current	I _{IO}		0°C~70°C		1.6		nA
Input Diag Current	1		25°C		±1.8		nA
Input Bias Current	I _{IB}		0°C~70°C		±2.2		nA
Common-Mode Input Voltage	V		25°C	±13	±14		V
Range	V_{ICR}		0°C~70°C	±13	±13.5		V
Peak Output Voltage	V _{OM}	R _L ≥10kΩ		±12	±13		V
		R _L ≥2kΩ	25°C	±11.5	±12.8		V
		R _L ≥1kΩ			±12		V
		R _L ≥2kΩ	0°C~70°C	±11	±12.6		V
Large-Signal Differential Voltage Amplification	A _{VD}	V _{CC} =15V, V _O =1.4V~11.4V, R _L ≥500kΩ	25°C	100	400		V/mV
		$V_O=\pm 10, R_L=2k\Omega$	25°C	120	400		V/mV
			0°C~70°C	100	400		V/mV
Unity-Gain Bandwidth	B ₁		25°C	0.4	0.6		MHz
Input Resistance	r _i		25°C	8	33		ΜΩ
Common-Mode Rejection	CMRR	V_{IC} =±13V, R_S =50 Ω	25°C	100	120		dB
Ratio	CIVILLIA	VIC-113V, IVS-3022	0°C~70°C	97	120		dB
Supply-Voltage Sensitivity	SVRR	V_{CC} +=±3V~±18V, R _S =50 Ω	25°C		7	32	μV/V
$(\Delta V_{IO}/\Delta V_{CC})$	SVINIX		0°C~70°C		10	51	μV/V
Supply Current	Icc	Vo=0, No load	25°C		2.67	5	mA

Notes: 1. Because long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a warranty. It is an engineering estimate of the averaged trend line of drift versus time over extended periods after the first 30 days of operation.

2. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

■ OPERATING CHARACTERISTICS


at specified free-air temperature, V_{CC} =5V (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS (Note 1)	MIN	TYP	MAX	UNIT
Input Offset Voltage	Vn	f=10Hz f=100Hz		10.5		nV/ √Hz
Peak-to-Peak Equivalent Input Noise Voltage	V _{N(PP)}	f=0.1Hz~10Hz		9.8 0.38		μV
Equivalent Input Noise Current	In	f=10Hz f=100Hz f=1kHz		0.35 0.15 0.13		nV/ √Hz
Peak-to-Peak Equivalent Input Noise Current	I _{N(PP)}	f=0.1Hz~10Hz		15		рА
Slew Rate	SR	R _L ≥2kΩ		0.3		V/µs

Note: All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise noted.

■ APPLICATION CIRCUIT

Input Offset-Voltage Null Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.