
Application Note: SY6818

High Current Overvoltage Protection Switch With Integrated Reverse Blocking FET

General Description

SY6818 is an over voltage protection switch with high current capability to prevent damage to the downstream system with low voltage rating. It achieves wide input voltage range from $2.5\,V_{DC}$ to $30\,V_{DC}$. Programmable OVP is available with simple external resistor divider. Integrated reverse blocking FET up to 20V rating prevents the leakage current from output side to input side when the input power supply is removed, but without output discharging. Extremely low power path resistance R_{PWPT} helps to reduce power loss during the normal operation. Enable control is available to cut off the energy path. High accuracy current indicator is employed internally. It integrates the overtemperature protection shutdown and auto-recovery with hysteresis to protect against over temperature events. It has a default over current protection up to 5 A internally and auto-recovery. Each auto-recovery process is composed of deglitch time T_{DG} and switch turn-on time T_{ON} . This IC along with CSP-12, 1.73mmx1.73mm footprint provides small PCB area application.

Ordering Information

Ordering Number	Package Type	Note
SY6818PLC	CSP1.73x1.73-12	

Features

- . $V_{IN}=2.5V$ to 30V
- . Integrated reverse blocking FET up to $20\,\mathrm{V}$ rating for high voltage charging mode
- . Extremely Low Power Path Resistance RPWPT $R_{PWPT}=53m\Omega$ typ.
- . Programmable OVP thru external resistor divider, accuracy up to +/-3%
- . Internal Soft Start to Prevent In-rush Current
- . Thermal Shutdown Protection & Auto Recovery
- . Current Indicator with High Accuracy up to +/-5%
- . RoHS Compliant and Halogen Free
- . Compact package: CSP- 12 (1.73mmx1.73mm)

Applications

- . Smart Phone
- . Tablet PCs
- . Mobile Device

Typical Applications

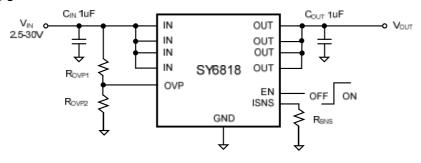
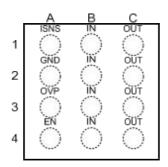
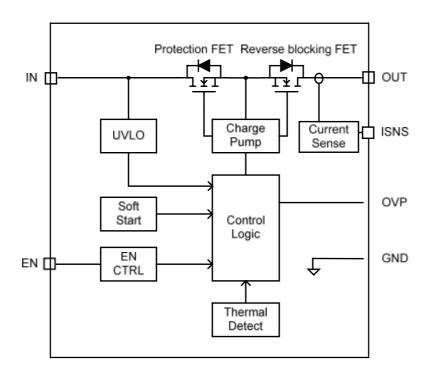



Figure 1. Schematic Diagram

Pinout (top view)

Part Number	Package type	Top Mark [®]
SY6818PLC	CSP1.73x1.73-12	ZQxyz

Note ①: $x=year\ code$, $y=week\ code$, $z=lot\ number\ code$.


Pin Name	Pin Number	Pin Description				
IN	B1,B2,B3,B4	Power input pin. Connect IN pin together. Decouple high frequency noise by connecting least 0. 1uF MLCC to ground.				
OUT	C1,C2,C3,C4	Output voltage pin. Connect OUT pins together for normal operation.				
ISNS	A1	Current indicator pin. Connect a resister R_{SNS} from this pin to ground. The current flow is mirrored internally to charge R_{SNS} for the indication. The ratio of power current to mirrored current is 2.5k. The voltage on ISNS pin equals to $V_{ISNS} = (I_{OUT}/2.5k) * R_{SNS}$.				
EN	A4	EN control pin. High logic enables all the internal circuit; low logic disables the internal energy flow path.				
OVP	A3	External OVP program pin. Connect resistor divider to this pin to program the OVP threshold. The internal reference is at 1.26 V. Pull down this pin to ground to disable external program function.				
GND	A2	Power ground pin.				

Absolute Maximum Ratings (Note 1)

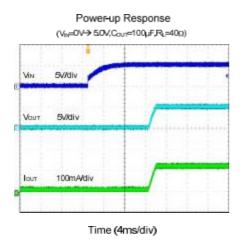
IN, EN, OVP,	30V
OUT,	20V
IN, EN, OVP,	6V
Continues IN, OUT current,	3A
Peak IN, OUT current (10ms),	5A
Power Dissipation, PD @ TA = 25°C CSP,	TBD W
Package Thermal Resistance (Note 2)	
heta JA	TBD °C/W
θ JC	TBD °C/W
Junction Temperature Range	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C
Recommended Operating Conditions (Note 3)	
IN, EN, OVP,OUT,	less than 30V
OUT,	less than 20V
ISNS,	less than 6V
Continues IN, OUT current,	less than 3A
Peak IN, OUT current (10ms),	less than 5A
Junction Temperature Range	40°C to 125°C
Ambient Temperature Range	

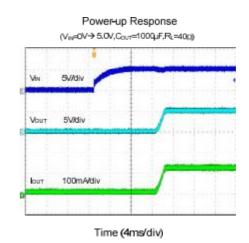
Block Diagram

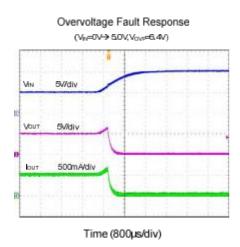
Electrical Characteristics ($V_{IN} = 2.5V$ to 30V, $R_{ISNS} = 1k$, $C_{IN} = 1uF$, $C_{OUT} = 1uF$, $T_A = 25$ °C, unless otherwise specified)

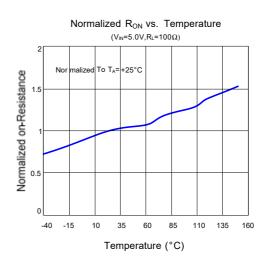
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		2.5		30	V
Input UVLO Threshold	$V_{\rm UVLO}$				2.4	V
UVLO Hysteresis	V _{HYS}			0.1		V
Reverse Blocking Range	V_{RB}				20	V
Bias Current	I_{BIAS}	$V_{IN}=5V$		100		μA
Reverse Blocking Current	I_{RB}	$V_{IN}=0V$, $V_{OUT}=16V$, $EN=0V$		2	5	μA
Shutdayan Cumant	T .	$V_{IN}=5V$, $EN=0V$		6	10	μA
Shutdown Current	I_{SD}	$V_{IN}=30V$, EN=0V		9	15	μA
	W	Rising	1.2			V
Enable Threshold	V_{EN}	Falling			0.5	V
OVP Program Threshold	Vovp		1.22	1.26	1.30	V
Resistance of Power Path	R _{PWPT}	V _{IN} =5V, I _{OUT} =200mA, from IN to OUT	30	53	70	mΩ
Current Indicator Accuracy	V _{ISNS}	$I_{OUT} = 0.5 A, R_{SNS} = 1 k$	186	200	214	mV
		$I_{OUT}=1.0A, R_{SNS}=1k$	380	400	420	mV
Maximum Current Capability Note ⁴	I_{MAX}			5		A
Output Load Capacitance	Соит	$V_{IN}=5V$			1000	μF
Deglitch Time	T _{DG}	Time from $2.5 \text{V} < \text{V}_{\text{IN}} < \text{V}_{\text{OVP}}$ to $\text{V}_{\text{OUT}} = 10\%$ of V_{IN}	6	11	16	ms
Switch Turn-On Time	Ton	$V_{IN}=5V$,	0.7	1.2	1.7	ms
		V_{OUT} =10% of V_{IN} to 90% V_{IN}				
Thermal Shutdown Temperature	T_{SD}			150		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C

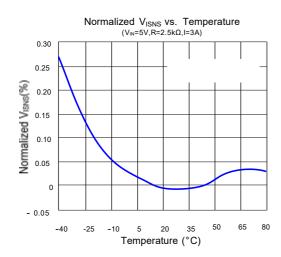
Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

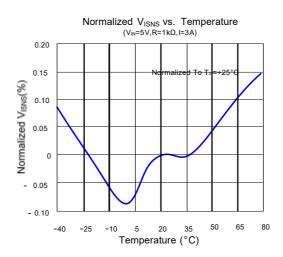

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

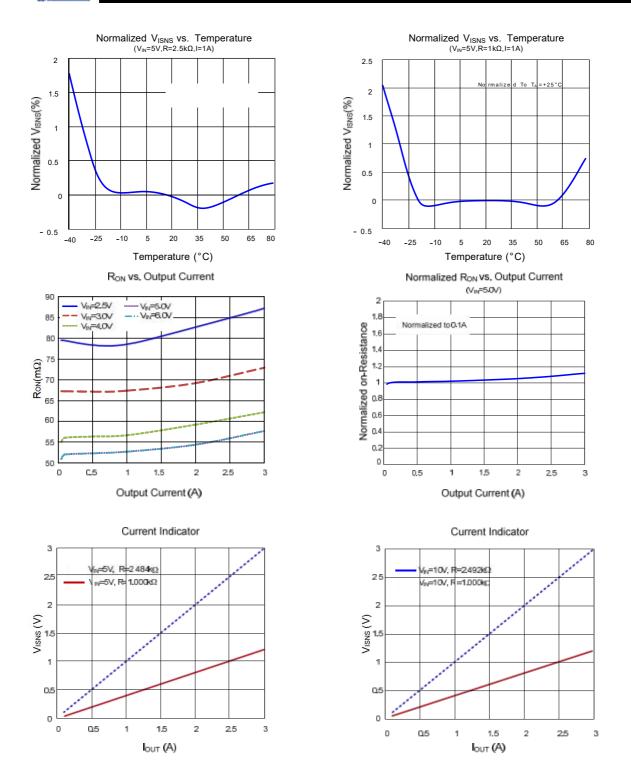

Note 3: The device is not guaranteed to function outside its operating conditions.


Note 4: These characteristics are design guaranteed, not test items.




Typical Operating Characteristics





General Operation Description

SY6818 is an over voltage protection switch with high current capability to prevent damage to the downstream system with low voltage rating. It is designed for the applications of smart phone, PC tablets and other mobile devices especially. It operates with wide input voltage range from $2.5V_{DC}$ to $30V_{DC}$. programmable OVP is available with simple external resistor divider. The integrated reverse blocking Power MOSFET up to 20V rating prevents the leakage current from output side to input side when the input power supply is removed or shorted suddenly, but without internal discharging circuit at the output side. Extremely low power path resistance R_{PWPT} is achieved to reduce the power loss during the normal operation. It is good for the overall system thermal design and the heat dissipation. Enable control is available to cut off the energy path to meet the requirement of startup sequence. Very high accuracy current indicator is employed internally. It is convenient to monitor the current flowing through the switch by reading the indicator voltage directly. It integrates the overtemperature protection shutdown and the auto-recovery with hysteresis to protect against over temperature events. It has a default over current protection up to 5A internally and auto-recovery. Each auto-recovery process is composed of deglitch time T_{DG} and switch turn-on time T_{ON} .

- Over Voltage Protection

SY6818 has an internal OVP threshold at 1.26V with around 20mV hysteresis. When the voltage on OVP pin is higher than the OVP threshold, the OVP is triggered and the internal power switch is turned off; when the voltage on OVP pin is lower than the OVP threshold minus the voltage hysteresis, the OVP recovers and the power switch is turned on again. Employing an external resistor divider, R_{OVP1} and R_{OVP2} , can program the input OVP point easily, as shown in (1).

$$V_{INOVP} = (R_{OVP1} + R_{OVP2}) * 1.26 / R_{OVP2}$$
 (1)

<u>- Leakage Current Reverse Blocking</u> SY6818 integrates back-to-back Power MOSFET to achieve leakage current reverse blocking. The reverse blocking function is implemented by switching off the back-to-back FET when the input side voltage drops lower than the output side voltage around 80 mV. In this way, SY6818 can block the reverse energy flowing from the output side to the input side when the input power source is plugged out or the input side is shorted to ground. It is useful to protect the downstream battery powered system and prolong the battery lifetime. When the input side voltage rises higher than the output

voltage minus 50 mV, the reverse blocking is relieved and the power MOSFET is able to switch on again.

- High Accuracy Current Indicator

SY6818 has a current indicator pin ISNS with very high accuracy. It is easily to monitor the current flowing through the power switch by reading the voltage on ISNS directly. The indication function is shown in (2). The voltage rating of this pin is 6V and SY6818 has a default current limit around 5A internally. Therefore, it is recommended strongly not to use an indication resistor too large, as shown in (3). When the current exceeds the default current limit, the power FET switches off and restarts automatically. The accuracy higher than 5% is achieved at 1A output current and that higher than 7% is achieved at 0.5A output current, as shown in Fig. 1 and Fig.2 respectively.

$$V_{ISNS} = (I_{OUT}/2.5k) * R_{SNS}$$
 (2)

$$R_{SNS} < (V_{ISNS_MAX}/I_{MAX}) * 2.5k$$
 (3)

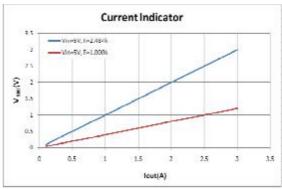


Fig. 1 Relationship between V_{ISNS} and I_{OUT} with different R_{SNS}

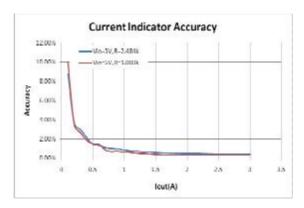
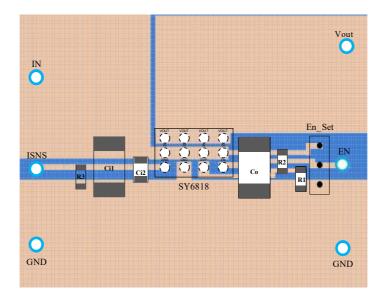
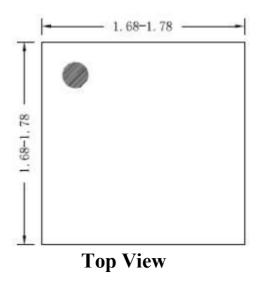
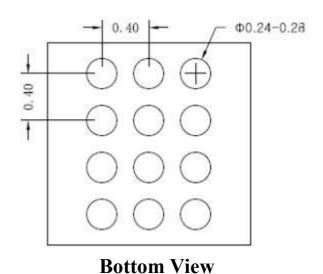
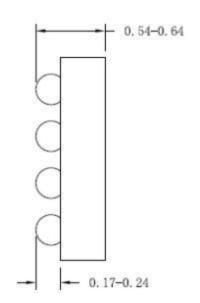
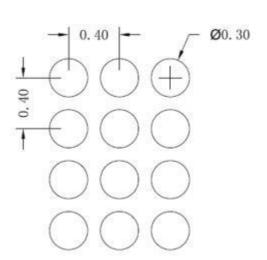



Fig. 2 Accuracy of current indicator with different R_{SNS}



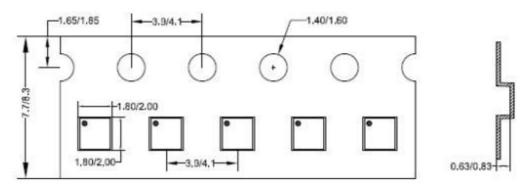

PCB Layout Suggestion



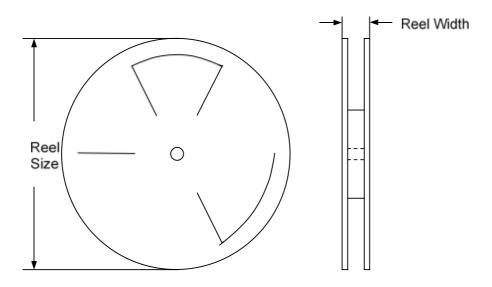


CSP1.73*1.73-12 Outline Drawing

Side View


Recommended PCB layout

Notes: All dimension in MM and exclude mold flash & metal burr


Taping & Reel Specification

1. CSP1.73x1.73 taping orientation

Feeding direction —

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Reel width(mm)	Trailer length(mm)	Leader length (mm)	Qty per reel
CSP1.73*1.73	8	4	7"	8.4	400	400	3000

3. Others: NA