

启臣微电子高性能可编程非隔离AC/DC转换开关

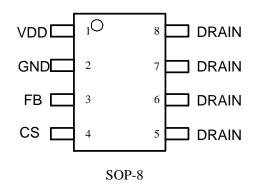
主要特点

- 内置650V高雪崩能力功率MOSFET
- 内置高压启动和自供电电路
- 适用于Buck、Buck-Boost等多种架构
- 多模式输出(输出电压大于3.3V,可通过FB电阻调整或固定输出12V)
- 输出功率可编程
- 改善EMI的频率抖动技术
- 优异的负载调整率和工作效率
- 全面的保护功能:

过载保护(OLP),过温保护(OTP),欠压保护(UVLO),FB 短路保护, CS 悬空保护,输出过压保护,磁饱和保护等

基本应用

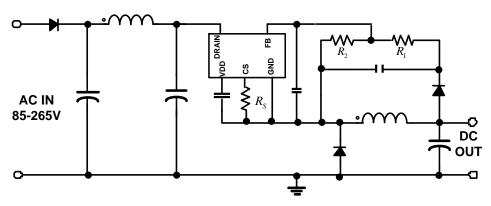
- 非隔离辅助电源
- 小家电
- 智能家居
- LED

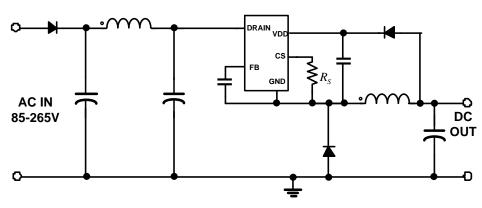

产品概述

CR3215A 集成非隔离式电源控制器,高雪崩能力功率 MOSFET,以及高压启动 MOSFET,用于外围元器件精简的小功率非隔离开关电源。多模式输出:输出电压可通过 FB 电阻调整,并实现 3.3V 以上多电压输出功能或固定输出 12V 功能。可通过 CS 引脚外接 采样电阻实现可编程输出电流控制。芯片内置高压启动与自供电模块,实现系统快速启动、超低待机、自供电功能。该芯片提供了完整的智能化保护功能,包括过载保护(OLP),过温保护(OTP),欠压保护(UVLO),FB 短路保护,FB 开路保护,输出过压保护,输出短路保护,磁饱和保护等。另外芯片的降频调制和频率抖动技术有助于改善 EMI 特性。

成都启臣微电子股份有限公司

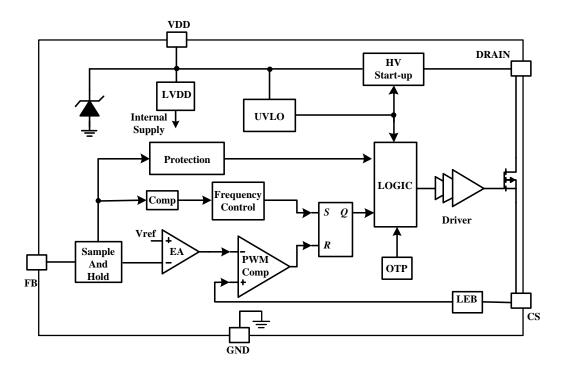
1/10


引脚分布


引脚描述

引脚序号	符号	描述
1	VDD	IC 供电引脚
2	GND	芯片地
3	FB	输出电压反馈端,同时作为模式选择端
4	CS	峰值电流检测输入端,可通过外接采样电阻调整峰值电流
5/6/7/8	DRAIN	内置高压 MOSFET 漏端

典型应用



输出电压可调应用方案

固定输出12V应用方案

结构图

CR3215A 内部简化图

极限参数

符号		参数	值	单位
V_{DD}	VDD 引	脚耐压	-0.3 to 20	V
V_{FB}	FB 引	脚耐压	-0.3 to 7	V
V_{CS}	CS 引	脚耐压	-0.3 to 7	V
V _{DRAIN}	DRAIN	引脚耐压	-0.3 to 650	V
$T_{ m L}$	引脚温度	焊接时间10秒	260	$^{\circ}$
T_{J}	最小/最大	二 工作结温	-40 to + 150	$^{\circ}$
T_{STG}	最小/最大	、存储温度	-40 to + 150	$^{\circ}$
T_{OA}	工作	温度	-20 to +85	℃

V1.3

电气特性

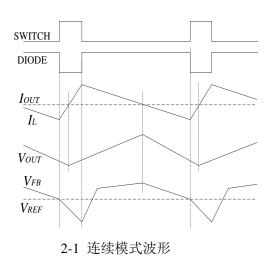
(VDD=12V, TA=25℃ 除了另作说明)

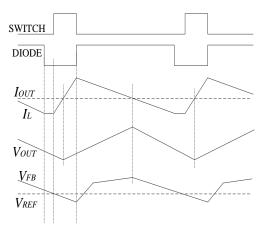
符号	参数	测试条件	最小	典型	最大	单位	
功率管漏端(DRAIN引脚)							
BVDSS	功率管耐压	I _{SW} =250uA	650			V	
I_{OFF}	关态漏电流	V _{sw} =600V			10	μΑ	
R _{DS(ON)}	导通电阻	I _{sw} = 500mA, T =25°C		10		Ω	
Vsw_start	高压启动电压			30		V	
电源电压(VDD引脚)						
V_{DD}	工作电压范围	After turn-on	10		16	V	
I_{OPS}	工作电流			450	700	μΑ	
V_{DD_ON}	VDD启动阈值电压		10	11	12	V	
V_{DD_OFF}	VDD欠压保护阈值电压		7.5	8.5	9.5	V	
V_{DD_HYS}	VDD迟滞			2.5		V	
V_{DD_CLAMP}	VDD钳位保护电压			16.5		V	
I_{DD_CH}	启动管充电电流	V _{DD} =9V		1.5		mA	
反馈端(FI	3引脚)						
T_{OFFMIN}	最小关断时间		15	18	21	us	
T_{ONMAX}	最大开启时间			13		us	
V_{REF}	MOS开通反馈基准电压		2.45	2.5	2.55	V	
T_{OLP}	OLP触发延迟时间			150		ms	
峰值电流检	测(CS端)						
V_{CS}	峰值电流限定电压		0.8	0.85	0.9	V	
T_{LEB}	过流检测前沿消隐时间			200		ns	
T_{SD}	过温保护温度		140	160		°C	
T _{HYST}	过温保护迟滞			30		°C	

工作原理描述

CR3215A 集成 PFM 控制器及 650V 功率 MOSFET,用于外围元器件精简的小功率非隔离开关电源,输出电压可通过 FB 电阻调整。CR3215A 内置高压启动与自供电模块,实现系统快速启动、超低待机、自供电功能。该芯片提供了完整的智能保护功能,包括过载保护,欠压保护,过温保护,FB 端开短路保护等。另外 CR3215A 的降频调制技术有助于改善 EMI特性。

高压启动与自供电


在启动阶段,内部高压启动管提供 1.5mA 电流对外部 VDD 电容进行充电;当 VDD 电压达到 V_{DD_ON},芯片开始工作,高压启动管停止对 VDD 电容充电;当 VDD 电压降低到 V_{DD_OFF},内部高压启动管再次提供 1.5mA 电流对外部 VDD 电容进行充电;从而实现芯片自供电,无需辅助绕组或其他外围元件对芯片供电。


输出电压可调模式

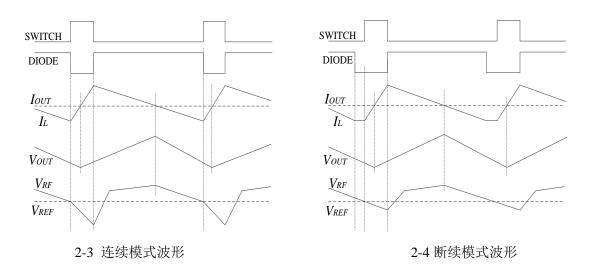
FB 端接分压电阻,芯片通过 FB 来检测输出电压。芯片允许用户通过调整 FB 端的分压电阻来调整输出电压,从而适应不同的功率应用要求。同时,用户可通过 CS 端外接的采样电阻 Rs 来对系统的最大电感电流进行设定。其输出电压和最大电感电流分别由以下两式决定:

$$V_{OUT} = \frac{R_1 + R_2}{R_2} \times 2.5V$$

$$I_{PEAK} = \frac{0.85}{R_2}$$

2-2 断续模式波形

芯片通过 FB 管脚对输出电压进行采样,当 FB 电压低于内部基准电压,芯片开启集成的高压功率开关管,对储能电感充电,当电感电流达到用户设定的基准电流 I_{PEAK} ,芯片关


启达科技(香港)有限公司

成都启臣微电子股份有限公司

闭集成的高压功率管,由续流二极管对储能电感续流。图 2-1 和图 2-2 分别给出连续模式 (CCM) 和非连续模式 (DCM) 下系统关键节点工作波形。同时芯片集成负载补偿功能,可以提高恒压精度,实现较好的负载调整率。

固定输出 12V 模式

FB 端接电容,系统通过 VDD 的电压来检测并调整输出电压,从而使输出电压固定为 12V。同时,芯片允许用户通过 CS 端外接的采样电阻 Rs 来对系统的最大电感电流进行设定。

VDD 电压经过内部分压电阻分压得到采样电压 V_{RF} 。当 V_{RF} 电压低于内部基准电压,芯片开启集成的高压功率开关管,对储能电感充电,当电感电流达到用户设定的基准电流 I_{PEAK} ,芯片关闭集成的高压功率管,由续流二极管对储能电感续流。图 2-3 和图 2-4 分别给出连续模式(CCM)和非连续模式(DCM)下系统关键节点工作波形。

PFM 调制

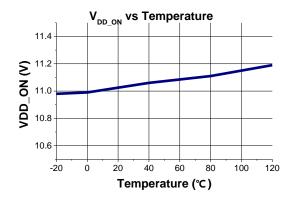
芯片工作在 PFM 模式,当系统的负载降低时,芯片会自动降低系统的工作频率 F_{sw} ,同时电感的峰值电流同样随系统工作频率 F_{sw} 降低而降低,从而减小系统的开关损耗,提升系统工作效率并降低待机功耗。

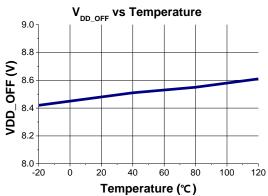
软启动

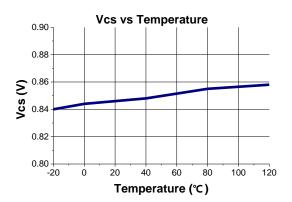
为了避免非隔离系统启动阶段因进入深度 CCM 模式,带来较大电流尖峰。CR3215A 设置软启动功能,在启动前数个开关周期内最高开关频率降低为 25%和 50%。同时芯片设计较小的 LEB 时间,以降低 LEB 时间内能量大小,以避免系统启动时的高电流尖峰。

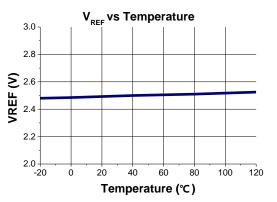
智能保护

CR3215A 具有全面的保护功能,包括:过载保护、过温保护、FB 短路保护、CS 过压保护,VDD 欠压保护等功能,并且这些保护具有自恢复功能。

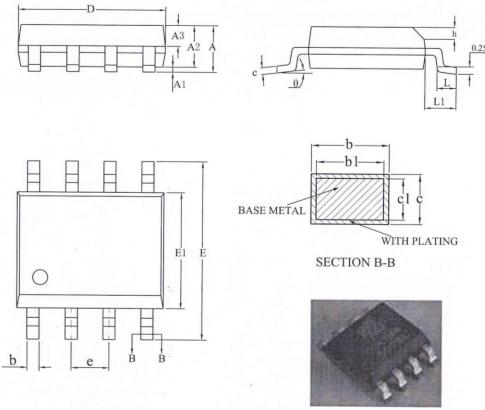

自动重启模式


当发生过载或短路等故障时,芯片进入到自动重启和 VDD 振荡模式中。在此过程中高压 MOSFET 不允许导通,同时 VDD 电容上电压持续在 8.5V 和 11V 之间振荡。通过芯片内部数字计数器对振荡周期的计数,数个周期后芯片退出保护模式并重新开始工作。如果故障解除,系统开始正常工作;否则系统再次进入振荡模式。


V1.3


特性曲线及波形

(VDD=12V, T_A=25℃除非特殊说明)℃



封装信息

SOP-8L

<i>⁄ъ⁄</i> т □.	毫米			
符号	最小	典型	最大	
A	1	-	1.75	
A1	0.10	-	0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	-	0.47	
b1	0.38	0.41	0.44	
c	0.20	-	0.24	
c1	0.19	0.20	0.21	
D	4.80	4.90	5.00	
Е	5.80	6.00	6.20	
E1	3.80 3.90 4.		4.00	
e	1.27BSC			
h	0.25	-	0.50	
L	0.50	-	0.80	
L1	1.05REF			
θ°	0°	-	8°	

印章信息

订购信息

产品型号	封装类型	包装材质	一盘	一盒	一箱
CR3215A	SOP-8L	编带	4000	24000	48000

产品最小订购量为48000片,即一箱的芯片数量。