

GENERAL DESCRIPTION

The GS7533 series is a set of low power high voltage regulators implemented in CMOS technology. Which can provide 150mA output current. The device allows input voltage as high as 36V. It is very suitable for multi-cell battery systems, bus voltage power supply systems and other high DC voltage systems. Wide input voltage can make it well withstand the impact of surge voltage and ensure the stability of output voltage.

The GS7533 series only $2\mu A$ (typical) current is consumed by itself, which is especially important in multi-battery power supply systems and can reduce the standby power consumption of the whole system.

TYPICAL APPLICATION

FEATURES

- Low Quiescent Current IQ: 2µA Typical at Light Loads
- 150mA Nominal Output Current
- Low Dropout Voltage
- Low Temperature Coefficient
- High Input Voltage (up to 36V)
- Output Voltage Accuracy: ±2%
- Output voltage range is adjustable from 1.2V to 5V, and the step size is 0.1V.
- Over temperature Protection
- Short Circuit Protection
- Packages: SOT23-3 and SOT89-3L

APPLICATIONS

- Audio/Video Equipment
- Communication Equipment
- Battery-Powered Equipment
- Automotive Head Unit
- Laptop, Palmtops, Notebook Computers

ORDERING INFORMATION:

Part Number	Package	Ordering Number	Packing Option	
	SOT23-3	GS7533-XXTR3	Tape and Real, 3000	
GS7533	SOT89-3L(Pin2-VIN)	GS7533-XXSTR3	T 1D 1 2000	
	SOT89-3L(Pin2-GND)	GS7533Y-XXSTR3	Tape and Real, 3000	

Note: "xx" represents the type of voltage value.

Order Information:

	Pin				
SOT23-3	SOT89-3L	SOT89-3L	Name	Function	
	(Pin2-VIN)	(Pin2-GND)			
3	2	3	VIN	Input Supply Voltage Pin. It is recommended to use a 1μ F or larger ceramic capacitor from VIN pin to ground. This ceramic capacitor should be placed as close as possible to IN pin.	
1	1	2	GND	Ground.	
2	3	1	VOUT	Regulator Output Pin. It is recommended to use an output capacitor with effective capacitance in the range of 1μ F to 10μ F. The capacitor should be located very close to this pin.	

Pin description:

ABSOLUTE MAXIMUM RATINGS :

Parameter	Symbol	Min	Max	Unit
VIN to GND	V_{IN}	-0.3	40	V
Junction Temperature	TJ	-40	150	°C
Power Dissipation @T _A =25°C	PD	Internall	y Limited	W
Storage Temperature Range	T _{STG}	-65	150	°C

Note:

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

ESD RATINGS:

Parameter	Symbol		Max	Unit
Electrostatic discharge	I _{ESD}	Latch up current	500	mA
	X7	Human-body model (HBM)	± 8000	V
	V ESD	Charge device model (CDM)	± 2000	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

RECOMMANDED OPERATING RANGE:

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.5	36	V
Output current	I _{OUT}	0	150	mA
Operating Temperature	T _{OPT}	-40	85	°C

THERMAL INFORMATION:

Thermal Metric	Symbol	Min	Max	Unit
Junction-to-ambient thermal resistance	$R_{ ext{ heta}JA}$	185.6	165	°C/W
Junction-to-case(top)thermal resistance	$R_{\text{\thetaJC(top)}}$	104.3	88.5	°C/W
Junction-to-board thermal resistance	$R_{ ext{ heta}JB}$	54.5	39.6	°C/W
Junction-to-top characterization parameter	Ψ _{JT}	31	26.5	°C/W
Junction-to-board characterization parameter	ψ _{јв}	54.5	49.7	°C/W
Junction-to-case(bottom)thermal resistance	$R_{\text{\thetaJC(bot)}}$	N/A	77.7	°C/W

ELECTRICAL CHARACTERISTICS(3.3V):

Symbol	Parameter	Conditions		Min	ТҮР	Max	Unit
$V_{\rm IN}$	Input Voltage ^[1]	V _{OUT} =3.3V				36	V
V _{OUT}	Output Voltage Accuracy	Iot	JT= 10mA	-2	0	+2	%
IQ	Ground Pin Current ^[2]	1	No Load		2	3	μΑ
I _{LIM}	Current Limit	VIN	= V _{OUT} $+$ 2V		150		mA
V _{DROP}	Dropout Voltage ^[3]	I _{OUT} =501	mA, $\Delta V_0 = 5\%$		254		mV
S _{LINE}	Line Regulation	$V_{IN} = V_{OUT} + 2V$ to 36V, IOUT=1mA		0.04	0.08	0.2	%/V
SLOAD	Load Regulation	V _{IN} =V _{OUT} +2V, I _{OUT} =1mA to 150mA			254	373	mV
DCDD		I _{OUT} =10	f=217Hz		50		10
PSKK	Power Supply Rejection Ratio	mA	f=1KHz		40		ав
T _C	Output Voltage Temperature Coefficient ^[4]	I _{OUT} =10mA, T _A =-40~120°C			100		ppm/°C
T _{SD}	Thermal Shutdown Temperature	Shutdown, temperature increasing			150		°C

(Vout=3.3V.VIN=Vout+2V. CIN= Cout=1uF. T_A =25°C, unless otherwise specified.)

Note:

- 1. $V_{in} \ge V_{out}$, whichever is greater.
- Maximum output current is affected the PCB layout,size of metal trace, the thermal conduction path between metal layers, ambient temperature and other environment factors of system. Attention should be paid to dropout voltage when V_{in}<V_{OUT}+V_{DROP}.
- 3. The dropout voltage is defined as V_{IN} V_{OUT} , when $V_{OUT} = 95\% * V_{OUT(NOW)}$.
- 4. Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total temperature range.

TYPICAL OPERATING CHARACTERISTICS:

 $(V_{in}=5.3V, V_{OUT}=3.3V, C_{IN}=C_{OUT}=1\mu F, \ Tested \ under \ T_J=25^{\circ}C, \ unless \ otherwise \ specified \)$

TYPICAL OPERATING CHARACTERISTICS:

 $(V_{in}=5.3V, V_{OUT}=3.3V, C_{IN}=C_{OUT}=1\mu F, \ Tested \ under \ T_J=25^{\circ}C, \ unless \ otherwise \ specified \)$

DETAILED DESCRIPTION:

Overview

The GS7533 low-dropout regulators (LDO) consumes only 2µA of quiescent current at light load and delivers excellent line and load transient performance. These characteristics, combined with low noise and good PSRR with low dropout voltage, make this device ideal for portable consumer applications.

Functional block diagram

Thermal Considerations

When the junction temperature is too high, the thermal protection circuitry sends a signal to the control logic that will shut down the IC. The IC will restart when the temperature has sufficiently cooled down. The maximum power dissipation is dependent on the thermal resistance of the case and the circuit board, the temperature difference between the die junction and the ambient air, and the rate of air flow. The GND pin must be connected to the ground plane for proper dissipation.

Note:

[1] The phase compensation circuit and ESR of the output capacitor are used inside the circuit to compensate, so a capacitor larger than 1μ F must be connected to the ground.

[2] It is recommended to use 1μ F polar capacitors for input and output, and to keep the capacitors as close to the V_{IN} and V_{OUT} pins of LDO as possible.

[3] Pay attention to the use conditions of input and output voltages and load currents to avoid the power consumption (P_D) inside the IC exceeding the maximum power consumption allowed by the package.

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
$$T_{I} = P_{D} \times R_{AIA} + T_{A}$$

[4] When the input voltage VIN is greater than 2.5V, if V_{IN} is also higher than the output set value plus the device dropout voltage, V_{OUT} is equal to the set value. Otherwise, V_{OUT} is equal to V_{IN} minus the dropout voltage. If V_{IN} lower than 2.5V, the V_{OUT} is:

$$V_{OUT} = V_{IN} - V_{Dropout}$$

GS7533 Low Power Consumption

High Voltage CMOS LDO Regulator

PACKAGE OUTLINE:

SOT23 Package

GS7533 Low Power Consumption

High Voltage CMOS LDO Regulator

PACKAGE OUTLINE:

SOT89-3 Package

Symbol	Dimensions i	n Millimeters	Dimensions in Inches		
Symbol	Min	Мах	Min	Мах	
А	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
c	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.55	0 REF	0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
e	1.500 TPY		0.060 TPY		
e1	3.000 TPY		0.118	TPY	
L	0.900	1.200	0.035 0.047		

