

TF2005M High-Side and Low-Side Gate Driver

Features

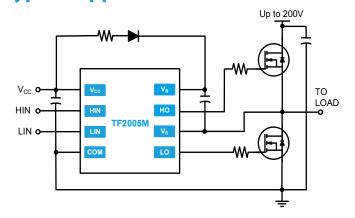
- Floating high-side driver in bootstrap operation to 200V
- Drives two N-channel MOSFETs or IGBTs in high-side/ low-side configuration
- Outputs tolerant to negative transients
- Wide low-side gate driver and logic supply: 10V to 20V
- Logic inputs CMOS and TTL compatible (down to 3.3V)
- Schmitt triggered logic inputs with internal pull down
- Delay matching of 30ns maximum
- Source/sink pulsed current of 290mA/600mA typical
- Undervoltage lockout for high-side and low-side drivers
- Space-saving SOIC-8 package available
- Extended temperature range:-40°C to +125°C

Description

The TF2005M is a mid voltage, high speed gate driver capable of driving N-channel MOSFETs and IGBTs in a high-side/ low-side configuration. TF Semiconductor's high voltage process enables the TF2005M's high-side to switch to 200V in a bootstrap operation. The 30ns (max) propagation delay matching between the high and the low side drivers allows high frequency switching.

The TF2005M logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) for easy interfacing with controlling devices. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction. The low-side gate driver and logic share a common ground

The TF2005M is available in a space-saving 8-pin SOIC package and the operating temperature extends from -40° C to $+125^{\circ}$ C.

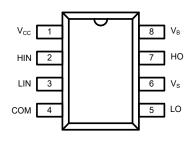

Applications

- DC-DC Converters
- AC-DC Inverters
- Motor Controls
- Class D Power Amplifiers

SOIC-8(N)

Typical Application

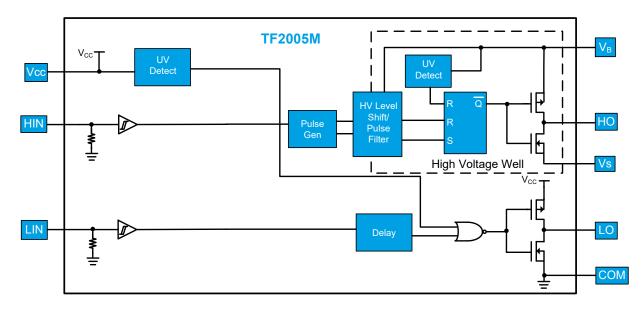
Ordering Information


Year Year Week Week

PART NUMBER	PACKAGE	PACK / Qty	MARK
TF2005M-TAU	SOIC-8(N)	Tube / 100	YYWW TFTF2005M Lot ID
TF2005M-TAH	SOIC-8(N)	T & R/ 2500	YYWW TFTF2005M Lot ID

tfss TF Semiconductor Solutions

High Side and Low Side Gate Driver


Top View: SOIC-8

TF2005M

Pin Descriptions

PIN NAME	PIN DESCRIPTION
HIN	Logic input for high-side gate driver output (HO), in phase
LIN	Logic input for low-side gate driver output (LO), in phase
V _B	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
V _{cc}	Low-side and logic fixed supply
LO	Low-side gate drive output
СОМ	Low-side return
NC	"No connect" pin

Functional Block Diagram

Absolute Maximum Ratings (NOTE1)

$V_{_{\rm B}}$ - High side floating supply voltage0.3V to +224V
V_s - High side floating supply offset voltageV _B -24V to V _B +0.3V
V_{HO} - High side floating output voltageV _s -0.3V to V _B +0.3V
dV _s / dt - Offset supply voltage transient50 V/ns

 $V_{_{CC}}$ - Low side and logic fixed supply voltage......-0.3V to +24V $V_{_{LO}}$ - Low side output voltage.....-0.3V to $V_{_{CC}}$ +0.3V $V_{_{IN}}$ - Logic input voltage (HIN and LIN)... -0.3V to $V_{_{CC}}$ +0.3V

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

High Side and Low Side Gate Driver

P_D - Package power dissipation at $T_A \le 25 \text{ °C}$ SOIC-8	0.625W
SOIC-8 Thermal Resistance (NOTE2)	
θ _{JC}	45 °C/W
θ _{JA}	
T ₁ - Junction operating temperature	+150 °C
T ₁ - Lead temperature (soldering, 10s)	
T _{stg} - Storage temperature range	

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Symbol	Parameter	MIN	ТҮР	МАХ	Unit
V _B	High side floating supply absolute voltage	V _s + 10		V _s + 20	V
V _s	High side floating supply offset voltage	NOTE3		200	V
V _{HO}	High side floating output voltage	Vs		V _B	V
V _{cc}	Low side and logic fixed supply voltage	10		20	V
V _{LO}	Low side output voltage	0		V _{cc}	V
V _{IN}	Logic input voltage (HIN and LIN)	0		5	V
T _A	Ambient temperature	-40		125	°C

NOTE3 Logic operational for $V_s = -5$ to +200V.

DC Electrical Characteristics (NOTE4)

 $V_{\scriptscriptstyle BIAS}(V_{\scriptscriptstyle CC},V_{\scriptscriptstyle BS})$ = 15V, $T_{\scriptscriptstyle A}$ = 25 °C , unless otherwise specified.

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
V _{IH}	Logic "1" input voltage		2.5			V
V _{IL}	Logic "0" input voltage				0.6	V
V _{OH}	High level output voltage, V _{BIAS} - V _O	$I_0 = 2mA$		0.05	0.2	V
V _{OL}	Low level output voltage, V _o	$I_0 = 2mA$		0.02	0.1	V
I _{LK}	Offset supply leakage current	VB = VS = 200V			50	μA
I _{BSQ}	Quiescent V _{BS} supply current	$V_{IN} = 0V \text{ or } 5V$	20	75	130	μA
I _{CCQ}	Quiescent V _{cc} supply current	$V_{IN} = 0V \text{ or } 5V$	60	120	180	μA
I _{IN+}	Logic "1" input bias current	$V_{IN} = 5V$		5	20	μA
I _{IN-}	Logic "0" input bias current	$V_{IN} = 0V$			2	μA
V_{CCUV+}	V _{cc} supply under-voltage positive going threshold		7.0	8.4	9.8	V
V _{CCUV-}	V _{cc} supply under-voltage negative going threshold		6.4	7.8	9	V
$V_{\rm BSUV+}$	V _{BS} supply under-voltage positive going threshold		7.0	8.4	9.8	V
V _{BSUV-}	V _{cc} supply under-voltage negative going threshold		6.4	7.8	9	V
I _{O+}	Output high short circuit pulsed current	$V_{o} = 0V, V_{IN} = Logic "1",$ PW $\leq 10 \ \mu s$	130	290		mA
I _{O-}	Output low short circuit pulsed current	$V_{o} = 15V, V_{IN} = Logic "0",$ PW $\leq 10 \ \mu s$	270	600		mA

AC Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS}) = 15V, T_A = 25 \text{ °C}, \text{ and } C_L = 1000 \text{pF}, \text{ unless otherwise specified.}$

Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit
t _{on}	Turn-on propagation delay	$V_s = 0V$		220	300	ns
t _{off}	Turn-off propagation delay	$V_{s} = 0V \text{ or } 200V$		200	280	ns
t _r	Turn-on rise time			100	220	ns
t _f	Turn-off fall time	$V_s = 0V$		35	80	ns
t _{DM}	Delay matching				30	ns

NOTE4 The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V₀ and I₀ parameters are referenced to COM and are applicable to the respective output pins: HO and LO.

NOTES For optimal operation, it is recommended that the input pulse (to HIN and LIN) should have an amplitude of 2.5V minimum with a pulse width of 440ns minimum.

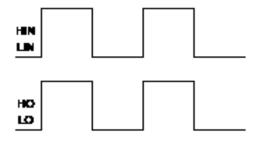


Figure 1. Input / Output Timing Diagram

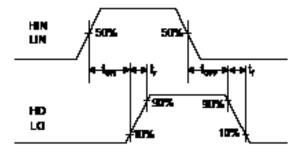


Figure 2. Switching Time Waveform Definitions

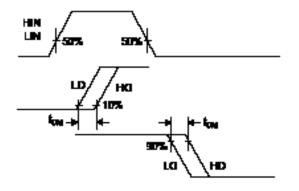


Figure 3. Delay Matching Waveform Definitions

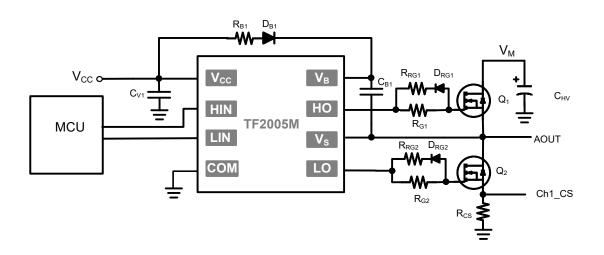


Figure 4. Single phase (of four) for Stepper motor driver application using the TF2005M

RRG1 and RRG2 values are typically between 0Ω and 10Ω , exact value decided by MOSFET junction capacitance and drive current of gate driver; 10Ω is used in this example.

RG1 and RG2 values are typically between 10Ω and 100Ω , exact value decided by MOSFET junction capacitance and drive current of gate driver; 50Ω is used in this example.

RB1 value is typically between 3Ω and 20Ω , exact value depending on bootstrap capacitor value and amount of current limiting required for bootstrap capacitor charging; 10Ω is used in this example. Also DB should be an ultra fast diode of 1A rating minimum and voltage rating greater than system operating voltage.

It is recommended that the input pulse (to HIN and LIN) should have an amplitude of 2.5V minimum (for VDD=15V) with a minimum pulse width of 440ns.

Rev.	Change	Owner	Date	
1.0	First release, AI datasheet	Keith Spaulding	4/23/2021	
1.1	Add Application Information	Keith Spaulding	8/25/2022	

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2021 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com