JAPAN AVIATION ELECTRONICS IND., LTD.			MX23A CONNECTOR		Connector Specification No. JACS-1728-4		
	CONNECTOR DIVIS 日本航空電子工業株式 コネクタ事業部	ION 代会社	SPECIFICATION		ТК	В	
Rev. 版数	Date 発行日	DCN No	Drawn by C 担当		checked by 查閲	Approved by 承認	
1	2.Aug.2005	-	N.Oiri		-	T.Totani	
5	25.May.2011	072124	T.Hayashi		-	N.Oiri	

1.Scope \int_{5}

This document prescribes about MX23A connector produced by Japan Aviation Electronics performance. MX23A connector series are as follows. <u>"* * "</u> means numbers of connector poles.

_ MX23A * * SF1	Socket housing No.of contacts:12,18,26,34pos.				
2 MX23A * * SF2	Socket housing				
MX23A * * NF1	Standard type pin connector(With connector fixing boss)				
MX23A * * NF2	Reverse type pin connector(With connector fixing boss)				
MX23A * * NF3	Standard type pin connector(With self tapping screw holes)				
MX23A * * XF1	Front cap				
MX23S05K351	Socket contact for AVSS0.5 ~ 1.25 mm ² wires				
MX23S05K4F1	Socket contact for AVSS0.3mm ² wire				
MX23A36SF1	Socket housing				
MX23A36SF2	Socket housing(Different mating key of MX23A36SF1)				
MX23A40SF1	Socket housing				
MX23A36NF1	Standard type pin connector (With connector fixing boss)				
MX23A36NF6	Standard type pin connector(Different mating key of MX23A36NF1)				
MX23A40NF1	Standard type pin connector (With connector fixing boss)				
Parts name and assembled product name.					

ceon

2.Following document is a related specification.

JIS D 0203

Method of moisture, rain and spray test for automobile parts

- 3.Operating conditions
- 3-1. Operating temperature range
 Minimum temperature: -40 (Ambient temperature)
 Maximum temperature: 125 (Add rising temperature by electric current and the ambient temperature.)
- 3-2. Rated current

The rated current is following on the ambient temperature is 85 \cdot 8 AVSS 1.25mm² wires inserted every other cavities are MAX DC 7A. The other AVSS 0.5 mm² wires are MAX DC 3A.

" " positions: Inserted AVSS 1.25mm² wires and pass the electric current DC 7A Other positions: Inserted AVSS 0.5mm² wires and pass the electric current DC 3A

Fig.2 Wire positions

Please assemble AVSS 1.25mm² wires at both ends of connector.

Please assemble AVSS 1.25mm² wires to the minimum, If use many AVSS1.25mm² wires insertion force of socket contacts and a socket housing will be increased.

3-3. Applicable wire size AVSS 0.3mm² AVSS 0.5mm² AVSS 0.85mm² AVSS 1.25mm² (Only "" positions can be inserted : See Fig. 3)

AVSS 1.25mm² can be inserted at "" positions. Fig.3 AVSS 1.25mm² wire insertion positions

4. Requirements 4-1.General instructions

	ltem	Spec	Measurement method		
	1. Structure and dimensions	No difference with drawings.			
	2. Exterior	There is no wrong to be a bat influence on	Visual check		
		performance.			
		For example: Cracks, Injuries, Stains			
	3. Marking	No difference with drawings.			
	4. Material	Be satisfied this specification.			
	5.Insertion and separation	No harmful catch is permissible.	Feel		
	feeling				
	6.Insertion force of socket	MAX 20N	See 5.1.1		
\wedge	contact and housing	40 20 sales lagerties farmer MAX 400N			
<u> </u>	7.Insertion and separation force	12~36 poles Insertion force: MAX 100N	See 5.1.2		
	of connector				
		40 poles insertion force: MAX 140N			
	Q Holding force of eachet contact		Sec 5 1 2		
	0. Holding force of socket contact		See 5.1.3		
	9. Holding force of connector		See 5.1.4		
	contact	Call flot linsert	See 5.1.5		
	11.Conductor crimping force	AVSS 0.3mm ² MIN 49.0N AVSS 0.5mm ² MIN 88.3N AVSS 0.85mm ² MIN 127.5N AVSS 1.25mm ² MIN 176.5N	See 5.1.6		
	12. Unlocking force	MAX 50N	See 5.1.7		
	13. Sealing performance	Initial MIN 100kPa	See 5.1.8		
		After test MIN 50kPa			
	14. Insulation resistance	MIN 100M	See 5.1.9		
	15. Withstand Voltage	No damage on connectors	See 5.1.10		
	16. Resistance	Initial MAX 5m	See 5.1.11		
	N° N	After test MAX 10m			
	17. Low-level resistance	Initial MAX 5m	See 5.1.12		
		After test MAX 10m			
	18. Leak current	MAX 1mA	See 5.1.13		
4 19. Dip soldering performance		No peel off plating from contacts. Solderability: 95% or more in soldering area.	See 5.1.14		

4.2 Endurance test

4.2.1Testing items and measurement items

Checking " " items to be measured

Test		Measureme	nt items	3	1					1	1
			Resistance	Low-level resistance	Sealing performance	Insulation resistance	Withstand voltage	Holding force of	Connector Holding force of socket contact	Leak current	Others
1	High temperature	Initial								~	λ
	test	After test								\mathbf{O}	,
2	Low temperature	Initial							U	Ť	
	test	After test						0	. <u>S</u>		#1
3	Thermal shock	Initial						C C			
		After test					25	S			
4	Water resistance	Initial					0				
		After test				X)				#2
5	Humidity test	Initial									
		After test			\mathbf{D}						
6	Current cycle	Initial									
		After test		5							
7	Insertion and separation	Initial	\sim								
	test	After test									
8	Salt spray	Initial	•								
		After test									
9	Oil resistance	Initial									
		After test									
10	Sulfur Dioxide	Initial									
	resistance	After test									
11	Ozone resistance	Initial									
	3	After test									
12	Vibration test	Initial									
<u> </u>		After test									#3
13	Complex environment	Initial									
	test	After test									#4

Other measurement items are as follows

#1 Drop test #2 Checking no flood inside connector

#3 Measured instantaneous disconnection during the vibration test

#4 Measured temperature rise during the complex environment test

4.2.2 Testing items and specifications

Item	Spec	Test method
1.High temperature test	Low-level resistance: MAX 10m	See 5.2.1
	Sealing performance: MIN 50kPa	
	Holding force of socket contact: MIN 50N	
2.Low temperature test	Low-level resistance: MAX 10m	See 5.2.2
	Drop test: No damaged	
3. Thermal shock	Low-level resistance: MAX 10m	See 5.2.3
	Sealing performance: MIN 50kPa	
4. Water resistance	Resistance: MAX 10m	See 5.2.4
	No flood inside connector	0
5. Humidity test	Low-level resistance: MAX 10m	See 5.2.5
	Sealing performance: MIN 50kPa	
	Leak current: MAX 1mA	
	Insulation resistance: MIN 100M	
	Withstand voltage: No damage on connector	
6. Current cycle	Resistance: MAX 10m	See 5.2.6
7. Insertion and separation of	Resistance: MAX 10m	See 5.2.7
connector	^O`	
8.Salt spray	Low-level resistance: MAX 10m	See 5.2.8
	Insulation resistance: MIN 100M	
	Withstand voltage: No damage on connector	
	Leak current: MAX 1mA	
9.Oil resistance	Resistance: MAX 10m	See 5.2.9
10.Sulfur Dioxide test	Low-level resistance: MAX 10m	See 5.2.10
11.Ozone resistance	Sealing performance: MIN 50kPa	See 5.2.11
12. Vibration test	Resistance: MAX 10m	See 5.2.12
	Instantaneous disconnection: MAX 10 µ s	
13. Complex environment test	Low-level resistance: MAX 10m	See 5.2.13
	Sealing performance: MIN 50kPa	
2.	Temperature rise: MAX 20 (Without	
	normal rise by electric current)	

5.Measurement and Test method

5.1Measurement method

5.1.1 Insertion force of socket contact and housing

Insert a socket contact into a socket housing at a rate of 20mm/min.

5.1.2 Insertion and separation force of connector

Insert a socket connector into a pin connector at a rate of 20mm/min. Then pull a socket connector at a rate of 20mm/min without activating a locking mechanism

5.1.3 Holding force of socket contact

Assemble a socket contact with crimped wire into a socket housing. Then pull the socket contact at a rate of 20mm/min from socket housing. (When measurement this item do not assemble a front cap.)

5.1.4 Holding force of connector

Pull a socket connector from a pin connector at a rate of 20mm/min.

5.1.5 Reverse insertion of socket contact

Insert a socket contact into a socket housing at a force of 50N in an abnormal direction.

5.1.6 Conductor crimping force

Crimp a wire into a socket contact and pull the wire in the axial direction at a rate of 100mm/min. When measurement this item do not crimp the socket contact insulation barrel.

5.1.7 Unlocking force

Connect a socket connector with a pin connector. Then release a lock mechanism at a rate of 20mm/min.

Fig.7

5.1.8 Sealing performance

Sink the connector into the water. Send 10kPa compressed air inside the connector. If during 30 seconds can't see an air leakage bubbles with naked eye then increase an air pressure by 10kPa.

5.1.9 Insulation resistance

Apply 500VDC between contacts and housing and contacts. Measure the insulation resistance within 30 seconds.

Fig.9

5.1.10 Withstand Voltage

Apply 1000V with frequencies 50Hz or 60Hz, havingwaveform close to a sinusoidal wave between contacts and between housing and contacts with in 1 minute.

5.1.11 Resistance

Measure the millivolt drop with passing the electric current through a connector. After subtract wire resistance from a measurement value.

DC power supply: 12VDC 1A

5.1.14 Dip soldering performance

The soldering part is observed with the magnifying glass.

Table.1 Solder condition

-	Lead-solder	Lead-free solder (3.0%Ag,0.5%Cu,96.5%Sn)		
Temperature	230±5	285±5		
Dipping time	5±1 s	10±1 s		

5.2 Endurance test method

5.2.1 High temperature test

Put the connector to the constant temperature 125 at 500 hours.

- 5.2.2 Low temperature test
- Put the connector to the constant temperature -40 at 500 hours.
- ³Take some samples out of the thermostatic chamber, and drop them immediately from a height of 1 m onto a steel plate at least 5 mm thick.

JAE Connector Div. Proprietary. Copyright © 2005, Japan Aviation Electronics Industry, Ltd. 5.2.5 Humidity test Put the connector to the moist air at 500 hours. Humidity: 90 ~ 95% Temperature: 85

5.2.6 Current cycle
Put the connector into the chamber to implement electric cycle test as follows.
Electric current ON: 45 min.
Electric current OFF: 15 min.
Number of cycles: 1000
Pass the electric current rising connector temperature. 60

Use separately connectors for each following test.

Test1. 2-cycle engine oil test

Sink the connector in the 2-cycle engine oil at 24 hours.

Test2. 4-cycle engine oil test

Sink the connector in the 4-cycle engine oil at 24 hours.

Test3. Brake oil test

Sink the connector in the brake oil at 24 hours.

Test4. Gasoline test

Pour 0.1I gasoline over the connector.

5.2.10 Sulfur Dioxide test Exposure the connector to the sulfer dioxide air at 24 hours. Humidity: 90 ~ 95% Temperature: 40 Concentration of sulfer dioxide is 10ppm. 5.2.11 Ozone resistance Put the connector into the ozone weather meter at 100 hours. Temperature: 38 Concentration of ozone: 50pphm 5.2.12 Vibration test Install connectors on the vibration plate to implement vibration test as follows. $\frac{1}{2} \text{ Green current during test to examine the instantaneous disconnection.} DC power supply: 13VDC 1A$ Vibrate one connector only one plane. Use separately connectors for each plane.Connector vibration plane: $<math display="block">\frac{\text{Left-right}}{\text{Piane}}$ Connector vibration plane: p — D o w n ıane Fig.16 Install connector 100 Connector 50 Тарі Fix the pin connector Fix wires the plate. t o the to ate. рI vibration plate

Fig.17

5.2.13 Complex environment test

The test procedure consists as follows.

- 1. Engage and disengage a connector at a rate of 20mm/min5 cycles.
- 2. Put the connector in electric current, vibration, temperature, and humidity complex environment cycles. Number of cycles: 50

Pass the electric current rising connector temperature 45 .