NO. : M221110

APPROVAL SHEET

MULTILAYER CERAMIC CAPACITOR Commercial Grade (Thin Layer Large-Capacitance Type) (IEC-60384 Qualified)

Approved by customer : (signing or stamping here)

SAMWHA CAPACITOR CO., LTD.							
Writtern by	Checked by	Approved by					
AL SE	74	gros					

2022. 11. 10.

SAMWHA CAPACITOR CO., LTD.

Address : 227,GYEONGGIDONG-RO, NAMSA-EUP, CHEOIN-GU, YONGIN-SI, GYEONGGI-DO, KOREA Contact : TEL 82-31-332-6441 , FAX 82-31-332-7661 Home page : www.samwha.com

< SPEC SUMMARY >								
SAMWHA Part no.		CS3	225X7S476K160NRL					
Туре		Thin La	yer Large-Capacitance					
Item	Specification	Unit	Test methods and Conditions(Capacitance,IR)					
Capacitance	47	μF						
Capacitance Tolerance	± 10 %		Testing Frequency : 120±24Hz Testing Voltage : 0.5 ±0.1Vrms					
Dissipation Factor	Max. 12.5	%						
Insulation Resistance	More than 1.06	MΩ	Applied the rated voltage for 2 minutes of charging.					
	3.20 ±0.40	L (mm)	+Canacitanaa Talaranaa Cada aaaa 1/9					
Chip Size	2.50 ± 0.25	W (mm)	 *Capacitance Tolerance Code page 1/8 *Chip size page 2/8 *Characteristics & Test Method page 3/8~5/8 					
	2.50 ±0.25	T (mm)	^Onalactenstics & rest method page 5/0~5/6					

			ST	ANDA	RD			NO		SW - M - 0
Enactment : March 27,1996		MULTI	LAYER (CERAMI	C CAF	PACITO	R			
IVIC			Comm	nercial	Grade			Pag	e	1 / 8
Applic These used		er equipment	t, commu <u>' For the</u> represent	inication high rel	equipr liability	nent. equipme	ənt / L			<u>t / Etc.</u> he_products.
2. Gener (1) Ty	al Code ype Designatio	n								
	<u>CS</u> (1)	<u>3225</u> (2)	<u>X7S</u> (3)	<u>476</u> (4)	<u>K</u> (5)	<u>160</u> (6)	<u>N</u> (7)	<u>R</u> (8)	<u>L</u> (9)	
1)	Multilayer Cerar	nic Capacito	or (Comm	orcial G	(rada)					
2)	Size Code :				araue)					
2) 3)	Т	his is expres he first two oefficient Cc	ssed in te digits are	ens of a	a millim		two di	gits are	width	
	T T	he first two oefficient Co	ssed in te digits are	ens of a the ler	a millim ngth, T	he last				
	T Temperature C Classificatio	he first two oefficient Co on Co	ssed in te digits are ode ode	ens of a e the ler Tem	a millim ngth, T	he last re Range		Capacita	ance -	Tolerance
	T T Temperature C	he first two oefficient Co on Co C	ssed in te digits are ode	ens of a the ler Tem	a millim ngth, T nperatu	he last re Range +125℃		Capacita		Tolerance n/℃
	T Temperature C Classificatio	he first two oefficient Co on Co C X	ssed in te digits are ode ode :0G	ens of a the ler Tem	a millim ngth, T nperatur -55 to 4	re Range 125°C +85°C		Capacita	ance 80 ppm	Tolerance n/℃
	T Temperature C Classificatio	he first two oefficient Co on Co C X X	ode 0G 0G	ens of a e the ler Tem	a millim ngth, T nperatur -55 to 4 -55 to	ne Range 125℃ +85℃ +125℃		Capacita	ance ⁻ 30 ppm ±15%	Tolerance n/℃
	T Temperature C Classificatio Class I	he first two oefficient Co on Co X X X X X X X X	ode ode ode 50G 57R 77S 77T	ens of a e the ler Tem - - - -	a millim ngth, T -55 to + -55 to + -55 to + -55 to +	re Range -125°C +85°C -125°C -125°C -125°C -125°C		Capacita ±3	ance 30 ppm ±15% ±15%	Tolerance n/℃
	T Temperature C Classificatio Class I	he first two oefficient Co on Co X X X X X X X X	ode ode 50G 57R 77S	ens of a e the ler Tem - - - -	a millim ngth, T -55 to + -55 to + -55 to + -55 to +	re Range -125°C +85°C -125°C -125°C -125°C -125°C		Capacita ±3 +22	ance 30 ppm ±15% ±15% ±22%	Tolerance n/°C
3)	T Temperature C Classification Class I Class II Class II Clas II Clas II Clas II Clas II Clas	he first two oefficient Co on Co C X X X X X X X Y ode(Pico far apacitance v gits represen 00000 pF es decimal 3.2 pF	ads) : Value in ts signific	ens of a e the ler Tem - - - - - - - - - - - - - - - - - - -	a millim ngth, T -55 to 4 -55 to 4 -55 to 4 -55 to 4 -55 to 4 -30 to	re Range +125℃ +85℃ +125℃ +125℃ +125℃ +125℃ d by thr	e	Capacita ±3 +22 +22	ance 30 ppm ±15% ±15% ±22% % ~ - % ~ -	Tolerance n/°C
3)	T Temperature C Classificatio Class I Class I Class II Class II Capacitance C The nominal C The first two di ex) 104 = 1 R denot	he first two oefficient Co on Co C X X X X X X X Y ode(Pico far apacitance v gits represen 00000 pF es decimal 3.2 pF	ads) : Value in ts signific	ens of a e the ler Tem - - - - - - - - - - - - - - - - - - -	a millim ngth, T -55 to 4 -55 to 4 -55 to 4 -55 to 4 -55 to 4 -30 to	re Range +125℃ +85℃ +125℃ +125℃ +125℃ +125℃ d by thr	e	Capacita ±3 +22 +22	ance 30 ppm ±15% ±15% ±22% % ~ - % ~ -	Tolerance n/°C
3)	T Temperature C Classification Class I Class II Class II Clas II Clas II Clas II Clas II Clas	he first two oefficient Co on Co X X X X X X X Y ode(Pico far apacitance V gits represen 00000 pF es decimal 5.2 pF olerance Co	ads) : Value in ts signific	ens of a e the ler Tem - - - - - - - - - - - - - - - - - - -	a millim ngth, T -55 to 4 -55 to 4 -55 to 4 -55 to 4 -55 to 4 -30 to	re Range +125℃ +85℃ +125℃ +125℃ +125℃ +125℃ d by thr	e	Capacita ±3 +22 +22	ance 30 ppm ±15% ±22% % ~ - ers. the nu Tolera	Tolerance n/°C

Tolerance
± 0.1 pF
± 0.25 pF
± 0.5 pF
± 1.0 %
± 2.0 %
± 5 %
± 10 %

Code	Tolerance
М	± 20 %
Р	+ 100, -0%
Z	+ 80, -20%
Н	+ 0.25/-0 pF
I	+ 0/-0.25 pF
U	+ 5/-0 %
V	+ 0/-5 %

SW - M - 04B 2 / 8

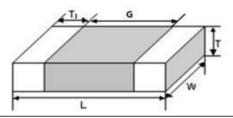
6) Voltage Code

v	Voltage Oode														
	code	6R3	100	160	250	350	500	101	201	251	501	631	102	202	302
	Val	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC
	Vol.	6.3V	10V	16V	25V	35V	50V	100V	200V	250V	500V	630V	1KV	2KV	3KV

7) Termination Code

ex) N : Ni-Sn (Nickel-Tin Plate)

A : Ag/Ni-Sn (Ag Epoxy/Nickel-Tin Plate) -> Soft Termination Type


- 8) Packing Code
 - ex) R : 7" Reel Type
 - L: 13" Reel Type
 - B : Bulk Type
- 9) Thickness option

Thickness(mm)		Code	Thickne	Code	
t	Tol(±)	oode	t	Tol(±)	oode
0.30	0.03	Blank	1.30	0.20	E
0.50	0.05	Blank	1.35	0.20	Н
0.60	0.10	A	1.60	0.20	I
0.80	0.10	В	1.80	0.20	J
0.85	0.15	В	2.00	0.25	K
1.00	0.15	E	2.50	0.25	L
1.10	0.15	E	2.80	0.30	М
1.15	0.15	E	3.20	0.30	Ν
1.25	0.15	E	5.00	0.40	0

3. Temperature Characteristics

See Page 5/8 (No.13)

4. Constructions and Dimensions

(Unit : mm)

	Dimension								
Code	Ler	igth	Wi	dth	T4(·)	O(
	L	Tol(±)	W	Tol(±)	T1(min)	G(min)			
0603	0.60	0.03	0.30	0.03	0.05	0.15			
1005	1.00	0.05	0.50	0.05	0.15	0.30			
1608	1.60	0.15	0.80	0.10	0.20	0.50			
2012	2.00	0.20	1.25	0.15	0.20	0.70			
3216	3.20	0.30	1.60	0.20	0.30	1.20			
3225	3.20	0.40	2.50	0.25	0.30	1.00			
4520	4.50	0.40	2.00	0.25	0.30	1.00			
4532	4.50	0.40	3.20	0.30	0.30	2.20			
5750	5.70	0.50	5.00	0.40	0.30	3.20			
	$7\mu F \Rightarrow L, W, T$ $\mu F \Rightarrow W : 1.2$					15, T : 0.80±0. 30, T : 1.60±0.			

(2) Construction of Termination

SW - M - 04B 3 / 8

No.	lte	əm	Specification	Test Methods and Conditions				
1	Operating Temperature Range	berature X5R : -55 to +85℃						
2	Insulation Resistance		50Ω·F min	Applied the rated voltage for 2 minutes of charging, The charge/discharge current is less than 50mA.				
3	Voltage proc	of	No defects or abnormalities	 X7R, X7S, X7T, X5R, Y5V : The rated voltage × 250% Applied between the terminations for 1 to 5 seconds. The charge/discharge current is less than 50mA. 				
4	Capacitance		within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.				
5	Dissipation Factor		X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100 ₄ F : 15%max Y5V : 20%max	CapacitanceFrequencyVoltage $C \leq 10 \mu F$ 1 ± 0.1 kHz0.5~1.0 Vrms $C > 10 \mu F$ 120 ± 24 Hz0.5±0.1 Vrms· Initial measurement $D = f = 10^{-1} M H H H H H H H H H H H H H H H H H H $				
				Perform the initial measurement according to Note1 for Class II • Measurement after test Take it out and set it for 24±2 hours (Class II) then measure				
6	Solderability s		95% of the terminations is to be soldered evenly and continuously.	<pre>*Pb-Free type Solder : 96.5Sn-3Ag-0.5Cu Solder temperature : 245±5℃ Immersion time : 3±0.1sec *Pre-Heating : at 80~120℃ for 10~30sec Preheat the capacitor at 120 to 150℃ for 1 minute. (Preheating for 3225,4520,4532 Step1:100℃ to 120℃, 1min</pre>				
	Appearance		No defects which may affect performance					
	Resistance	Capacitance change	X7R, X7S, X7T, X5R : Within±7.5% Y5V : Within±20%	Step2:170°C to 200°C, 1min) Immerse the capacitor in a eutectic solder solution at				
7	to Soldering Heat	Dissipation Factor	X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100µF : 15%max Y5V : 20%max	260±5℃ for 10±0.5 seconds. Initial measurement Perform the initial measurement according to Note1 for				
		I.R.	50Ω·F min	Class II •Measurement after test Let sit at room temperature for 24±2 hours,then measu				
		Appearance	No defects which may affect performance	Perform the five cycles according to the four heat treatments listed in the following table.				
		Capacitance Change	X7R, X7S, X7T, X5R : Within \pm 7.5% Y5V : Within \pm 20%	Step 1 2 3 4 Min. Max. Temp operating Room operating Room				
8	chongo ot l	ge of Factor *3216 Size 100µF : 15%max	X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100 <i>µ</i> F : 15%max Y5V : 20%max	$ \begin{array}{c ccccc} (°C) & temp. & Temp & temp. & Temp \\ +0/-3 & & +3/-0 \end{array} $ Time 30+3 2 to3 30+3 2 to3				
		I.R	50Ω·F min	(min) 0010 100 0010 100 ·Initial measurement Perform the initial measurement according to Note1 for Class II ·Measurement after test Perform the final measurement according to Note2				

SW - M - 04B 4 / 8

No.	o. Item		Specification	Test Methods and Conditions		
	Appearance No defects which may affect performance		-			
		Capacitance Change	X7R, X7S, X7T, X5R : Within ±12.5% Y5V : Within ±30%	Apply 150% of the rated voltage for 1000+48/-0 hrs at the maximum operating temperature ±3°C. The charge/discharge current is less than 50mA.		
9	Endurance	Dissipation Factor	X7R, X7S, X7T, X5R : 20%max *3216 Size 100∠F : 30%max Y5V : 40%max	-Initial measurement Perform the initial measurement according to Note1 for Class II		
		I.R	12.5Ω·F min	 -Measurement after test Perform the final measurement according to Note2 		
10	Substrate bending test		Support Support Solder Chip Printed circuit board before testing 1.60 ± 0.20 m or 0.80 ± 0.10 m R5 Probe to exert bending force Speed: 1.0mm/s Printed circuit board under test Displacement	 ·Substrate material Glass EPOXY Board. ·Thickness 1.6mm 0.8mm(0603/1005size) *. Test condition Bending limit : 1mm Pressurizing speed : 1mm/sec Holding time : 5±1sec 		
		Capacitance Change	No cracking or marking defects shall occur X7R, X7S, X7T, X5R: Within ±10% Y5V : Within ±30% Within +30/-40% (cap≥10∠F)			
		Appearance	No defects or abnormalities			
		Capacitance	Whin the specified tolerance	After soldering and then let sit for 24±2hr at room temperature. The capacitor should be subjected to a simple		
11	Vibration	Dissipation Factor	X7R, X7S, X7T, X5R : 12.5%max *3216 Size 100∉F : 15%max Y5V : 20%max	harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz, shall be traversed(from 10Hz to 55Hz then 10Hz again) in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions(total is 6hours).		
		Appearance	No defects which may affect performance	Apply the rated voltage at 40±2°C and		
	Accelerated	Capacitance Change	X7R, X7S, X7T, X5R: Within $\pm 12.5\%$ Y5V : Within $\pm 30\%$	90 to 95%RH for 500+24/-0 hrs. The charge/discharge current is less than 50mA.		
12	Accelerated damp heat, steady state	Dissipation Factor	X7R, X7S, X7T, X5R : 20%max *3216 Size 100∠F : 30%max Y5V : 40%max	Perform the initial measurement according to Note1 for Class II		
		I.R.	Y5V : 40%max 12.5Ω·F min	Measurement after test Perform the final measurement according to Note2		

SW - M - 04B 5 / 8

No.	ltem	Specification					Test Methods and Conditions
		Char.	Temp. Range	Reference Temp.	Cap.	Change	The capacitance change should be measured after 5 min. at each specified
	Temperature	X5R	-55 to +85℃	25℃	Within	±15%	temperature stage. The ranges of capacitance change
13	characteristic	X7R	-55 to +125℃	25℃	Within	±15%	compared with the 25°C value over the
	of capacitance	X7S	-55 to +125℃	25℃	Within	±22%	temperature ranges shown in the table
		X7T	-55 to +125℃	25℃	Within -	+22/-33%	should be within the specified ranges.
			-30 to +85℃	25℃	Within -	+22/-82%	should be wann the specified langes.
		Y5V	30 10 +03 0	230	VVILIIII	122/ 02/0	

*Note1. Initial Measurement for Class II

Perform a heat treatment at 150+0,-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure

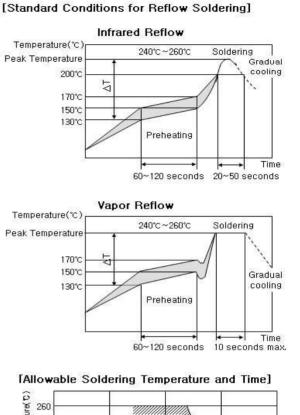
*Note2. Measurement after test

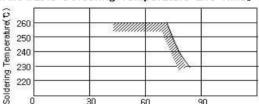
Class II Perform a heat treatment at 150+0,-10°C for one hour and then let sit for 24±2 hours at room temperature,then measure.

"Following the International standards, the title of each test item is subject to change."

(1) Bulk pa	acking ① 1000 p		olyboc							
	2 5 Polyk									
	3 10 Inne	er boxes	per Out	рох						
(2) Reel Pac	-									
	1 8~10									
<i>.</i>	② 6 Inner	boxes p	er Out b	ох						
(3) Reel Dim	nensions									
	Г П П									(Unit : m
		MARK	SIZE 0603~32	0.5	A 78±2	B Φ50Min	C	D Φ21±0.	E 8 2±0.5	W 10±1
(Q1/i	È - I - I - I - I - I - I - I - I - I -	7 " REEL	4520~45		0+0,-3	Φ60-0,+1	Φ13±0.5 Φ13±0.2	Φ21±0.		
		13 " REEL			330±2	Φ70Min	Φ13±0.5	Φ21±0.		
	! ⊷⊶• !				·					
(4)Number c	of Package									
(), (), (), (), (), (), (), (),				-	7"			13"		
TYPE	E E	IA CODE			REEL			Qt/REEL		
CS060		CC0201		15,000						
CS100		CC0402		,	000			50,000		
	CS1608 CC0603 CS2012 CC0805			4,000 3,000 ~ 4,000			15,000 8,000 ~ 15,000			
CS32 ⁻	16	CC1206			~ 4,000		6,000 ~ 10,000			
CS3225 CC1210			1,000 ~ 3,000			4,000 ~ 10,000				
00450										
CS452 CS452 (5) Tape D	20 32	CC1808 CC1812		1,500 -	- 3,000 1,000		0.3me	_ ,500 ~ 5,0	000 0.4mex	
CS453	20 32	CC1808 CC1812	━━ ━━ ┶	1,500 ~ 500 ~	~ 3,000	Ē				
(5) Tape D	20 32 Vimensions	CC1808 CC1812		1,500 ~ 500 ~	~ 3,000 1,000					
(5) Tape D	20 32	CC1808 CC1812	━━ ━━ ┶	1,500 ~ 500 ~	~ 3,000 1,000		0.3me			
(5) Tape D	20 32 Vimensions J J V P INSERT EIA CODE	CC1808 CC1812		1,500 ~ 500 ~	~ 3,000 1,000	E	0.3me	и — — —] 4 — —	0.4max + - - - - - - - - - - - - -	J
CS453 (5) Tape D	20 32 Vimensions J J Vimensions J Vimensions	CC1808 CC1812			~ 3,000 1,000	E	0.3ma 	их — — —] 4— — max ssed	0.4max .4max .4max .7max EMBOSSED	J 1.5±0.1
CS453 (5) Tape D C C C C C C C C C C C HI	20 32 Vimensions J J V P INSERT EIA CODE	CC1808 CC1812		1,500 ~ 500 ~	~ 3,000 1,000	E 5 1.75±0.1	0.3me	ix max sssED G	0.4max → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
CS453 (5) Tape D C C C C C C C C C C C C C C C C C C C	20 32 Vimensions J J Vimensions J Vimensions Limensions J Ela CODE CC0201	CC1808 CC1812	В 0.37±0.05	1,500 ~ 500 ~ ↓ ↓ B B C 8.0±0.3	~ 3,000 1,000	E 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 2.0i R EMBC	IX mex DSSED G 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5±0.1
CS453 (5) Tape D C	20 32 Vimensions J Vimensions P INSERT EIA CODE CC0201 CC0402	CC1808 CC1812 TRANSPORT F A 0.67±0.05 1.15±0.1	B 0.37±0.05 0.65±0.1	1,500 ~ 500 ~ ↓ ↓ ↓ B B C 8.0±0.3 8.0±0.3	 3,000 1,000 1,000 1,000 3.5±0.04 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.3me 0.05 2.0±0.05	G 2.0±0.1 2.0±0.1	0.4max → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.5±0.1 1.5±0.1
CS453 (5) Tape D C C C C C C C C C C C C C C C C C C C	20 32 Vimensions J J Vimensions J Vimensions CC0201 CC0402 CC0603	CC1808 CC1812 TRANSPORT F A 0.67±0.05 1.15±0.1 1.9±0.2	B 0.37±0.05 0.65±0.1 1.10±0.2	1,500 ~ 500 ~	 3,000 1,000 1,000 1,000 3.5±0.08 3.5±0.08 3.5±0.08 	Ε 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 0.3me 2.0t 0.5 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5±0.1 1.5±0.1 1.5±0.1
CS453 (5) Tape D C	20 32 Vimensions J J Vimensions J V V V V V V V V V V V V V	CC1808 CC1812 TRANSPORT F A 0.67±0.05 1.15±0.1 1.9±0.2 2.4±0.2	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2	1,500 ~ 500 ~	 3,000 1,000 1,000 1,000 3.5±0.00 3.5±0.00 3.5±0.00 3.5±0.00 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 0.3me 0.3me 0.3me 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.5±0.1 1.5±0.1 1.5±0.1 1.5±0.1
CS453 (5) Tape D C	20 32 Vimensions J J Vimensions J Vimensions CC0201 CC0402 CC0603 CC0805 CC1206	CC1808 CC1812 TRANSPORT	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.80±0.2	1,500 ~ 500 ~	 ~ 3,000 1,000 1,000 1,000 1,000 3.5±0.05 3.5±0.05 3.5±0.05 3.5±0.05 3.5±0.05 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 2.01 F 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5±0.1 1.5±0.1 1.5±0.1 1.5±0.1 1.5±0.1
CS453 (5) Tape D	20 32 Vimensions J J Vimensions J V V V V V V V V V V V V V	CC1808 CC1812 TRANSPORT F F A 0.67±0.05 1.15±0.1 1.9±0.2 2.4±0.2 3.6±0.2	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.80±0.2 2.3±0.2	1,500 ~ 500 ~ 500 ~	 3,000 1,000 1,000 1,000 3.5±0.05 3.5±0.05 3.5±0.05 3.5±0.05 3.5±0.05 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 2.0t 0.5m 2.0±0.05 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1 4.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	$\begin{array}{c} 1.5 \pm 0.1 \\ 1.5 \pm 0.1 \end{array}$
CS453 (5) Tape D	20 32 Vimensions J J Vimensions J Vimensions CC0201 CC0402 CC0402 CC0805 CC1206 CC1210 CC1808	CC1808 CC1812 TRANSPORT F A 0.67±0.05 1.15±0.1 1.9±0.2 2.4±0.2 3.6±0.2 3.6±0.2 4.8±0.2	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.80±0.2 2.3±0.2	1,500 ~ 500 ~ 500 ~	 ~ 3,000 1,000 1,000 1,000 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 5.5±0.1 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1	0.3me 0.3me 2.0m EMBC F 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 8.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1
CS453 (5) Tape D	20 32 Vimensions J J Vimensions J Vimensions CC0201 CC0402 CC0402 CC0402 CC0805 CC1206 CC1210 CC1808 CC1812 BLANK	CC1808 CC1812 TRANSPORT ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.80±0.2 2.3±0.2	1,500 ~ 500 ~ 500 ~	 ~ 3,000 1,000 1,000 1,000 1,000 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 5.5±0.1 5.5±0.1 5.5±0.1 5.5±0.1 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1	0.3me 0.3me 0.3me 0.3me 2.0t 0.05 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 8.0±0.1 8.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1
CS453 (5) Tape D	20 32 Vimensions J P INSERT EIA CODE CC0201 CC0402 CC0603 CC0805 CC1206 CC1210 CC1808 CC1812	CC1808 CC1812 TRANSPORT ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	B 0.37±0.05 0.65±0.1 1.10±0.2 2.00±0.2 2.80±0.2 2.3±0.2 3.6±0.2	1,500 ~ 500 ~ 500 ~	 3,000 1,000 1,000 1,000 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 3.5±0.08 5.5±0.1 5.5±0.1 	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1	0.3me 0.3me 0.3me 0.3me 2.0t 0.05 2.0±0.05 2.0±0.05 2.0±0.05 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 4.0±0.1 8.0±0.1 8.0±0.1	G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1
CS453 (5) Tape D 	20 32 Vimensions J J Vimensions J Vimensions CC0201 CC0402 CC0402 CC0402 CC0805 CC1206 CC1210 CC1808 CC1812 BLANK	CC1808 CC1812 TRANSPORT	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.3±0.2 2.3±0.2 3.6±0.2 CHIPS	1,500 ~ 500 ~ 500 ~ C 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 12.0±0.3	 3,000 1,000 1,000 1,000 3,5±0.08 4,85% 4,8	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1 1.75±0.1 1 1.75±0.1 1 1.75±0.1		G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1
CS453 (5) Tape D	20 32 Vimensions J Vimensions Vimensions J Vimensions CC0201 CC0201 CC0402 CC0603 CC0805 CC1206 CC1210 CC1808 CC1812 BLANK 10 to 20pit	CC1808 CC1812 TRANSPORT	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.3±0.2 2.3±0.2 3.6±0.2 CHIPS	1,500 ~ 500 ~ 500 ~ C 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 8.0±0.3 12.0±0.3	 ~ 3,000 1,000 1,000 1,000 3.5±0.05 3.5±0.05<td>E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 0.175±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1</td><td></td><td>G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1</td><td>0.4max → → → → → → → → → → → → → → → → → → →</td><td>1.5 ± 0.1 1.5 ± 0.1</td>	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 0.175±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1 1.75±0.1		G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1
CS453 (5) Tape D	20 32 Vimensions J Vimensions Vimensions J Vimensions CC0201 CC0201 CC0402 CC0603 CC0805 CC1206 CC1210 CC1808 CC1812 BLANK 10 to 20pit	CC1808 CC1812 TRANSPORT	B 0.37±0.05 0.65±0.1 1.10±0.2 1.65±0.2 2.00±0.2 2.3±0.2 2.3±0.2 3.6±0.2 CHIPS	1,500 ~ 500 ~ 500 ~	 ~ 3,000 1,000 1,000 1,000 3.5±0.05 3.5±0.05<td>E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1 1.75±0.1 1 1.75±0.1 1 1.75±0.1</td><td></td><td>G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1</td><td>0.4max → → → → → → → → → → → → → → → → → → →</td><td>1.5 ± 0.1 1.5 ± 0.1</td>	E 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 5 1.75±0.1 1 1.75±0.1 1 1.75±0.1 1 1.75±0.1		G 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1 2.0±0.1	0.4max → → → → → → → → → → → → → → → → → → →	1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1

6 / 8


SW - M - 04B


6.Caution

- ▶ Reflow Soldering
- 1. The sudden temperature change easily causes mechanical damages to ceramic components. Therefore, the preheating procedures should be required for the soldering of ceramic components.
- 2. Please refer to the recommended soldering profiles as shown in figures, and keep the temperature difference $(\triangle T)$ within the range recommended in Table 1.

Table 1

Size code	Temperature Difference
0603, 1005, 1608, 2012, 3216	∆T≤190℃
3225size and over	∆T≤130℃

30

ា

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

60

90 Soldering time(sec.)

► Storage Condition

*When Solderability is considered. Capacitor are recommended to be used in 12 months

- (1) Temperature: 25°C ± 10°C
- (2) Relative Humidity: Below 70% RH
- ▶ The Regulation of Environmental Pollution Materials.

*Never use materials mentioned below in MLCC products regulated this document.

Pb, Cd, Hg, Cr⁺⁶, PBB(Polybromide biphenyl), PBDE(Polybrominated diphenyl ethers), asbestos.

	SW - M - 04B 8 / 8
Note	
(1) 'Aging'/'De-aging' Behavior of high dielectric MLCCs	
(Typically represented by X7R, Y5V temperature characteristic of	which main composition is BaTiO3
'Aging' / 'De-aging' Behavior of high dielectric MLCCs Please note	that high dielectric type dielectric
Ceramic Capacitors have a "normal" 'aging' behavior / characterist	ic, that is; their capacitance
value decreases with time from its value when it was first manufac	
capacitance value begins to decrease at a logarithmic rate defined	by:
$C_t = C_{24} (1 - k \log 10 t)$	
where :	
where ·	
C_t = Capacitance Value, t hours after the start of 'aging'	
C ₂₄ = Capacitance Value, 24 hours after its manufacture	
k = aging constant (capacitance decrease per decade-hour) t = time, in hours, from the start of 'aging'	
t - time, in nours, nom the start of aging	
Ceramic's Capacitance Change (%) versus	(ime (Hours)
10	
5	
Ψ 0	COG X8R
6 -5 au	X7R
ප් -10	X5R
0 -15	ASK
Capacitance -5 -0 -5 -0 -15 -20 -25 -25	
<u>d</u> -25 0 30	¥5V

The capacitance value can be restored (a.k.a. 'de-aged') by exposing the component to elevated temperatures approaching its Curie Temperature (approximately 120°C). This 'deaging' can occur during the component's solder-assembly onto the PCB, during life or temperature cycle testing., or by ' baking ' at 150℃ for about 1 hour.

Time [hr.]

1000

100

(2) Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog. **O**Aircraft equipment ^②Aerospace equipment ③Undersea equipment ④Power plant equipment **S**Medical equipment ©Transportation equipment (vehicles, trains, ships, etc.) ⑦Traffic signal equipment ⑧Disaster prevention / crime prevention equipment Industrial equipment (Conveyors, Robot equipment, etc) @Led equipment OApplication of similar complexity and/or reliability requirements to the applications listed above

-30 -35 -40

10

10000