
RS422 通讯接口芯片

产品介绍

南京国微电子有限公司研制的 WS3076 是 3.3V/5V、全双工 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。 WS3076 总线具有故障保护功能,当接收器输入开路或者短路时,可以保证接收器输出为高电平状态。

WS3076 芯片可以实现 10Mbps 的无误码数据传输。并且具有热插拔功能,在上电或者热插拔过程中可以消除总线上的故障瞬变信号。

WS3076 芯片接收器输入阻抗为 1/8 单位 负载,允许多达 256 个收发器挂接在总线上, 实现全双工通信。所有驱动器输出以及接收器 输入提供±15kV 人体模式 ESD 保护,采用 14 脚 SO 封装,工作于-40℃至+125℃温度范围。 产品的结构及引脚图(Top View)如下;

WS3076 引脚图—14-pin SOP (Top View)

WS3076

3.3V/5V 10Mbps 全双工 RS422 通讯接口芯片

14-pin SOP 封装

产品特征

- 3.3V/5V 电源电压
- 10Mbps 的无误码数据传输
- •通信端口提供±15kV 人体模式 ESD 保护
- Fail-safe 功能
- · DE 与 RE 采用热插拔输入结构
- 具有 1/8 单位负载,多达 256 个收发器可挂接在同一总线上
- 采用 14 脚 SO 封装

应用

- 照明系统
- 电表
- 工业控制
- 工业电机驱动
- · 自动 HVAC 系统

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@gbdz.net

Tel: +86-25-68005828 http://www.gbdz.net

表 1: WS3076 电性能

(VCC = +3.3V ± 5%, TA =TMIN to TMAX, 除非另有说明。典型值为 VCC=3.3V, TA=+25°C)

参数	符号	条件		最小	典型	最大	单位
驱动器							
差分驱动输出(无负载)	VOD1	图 1, 空载				VCC	伏
* /\ 7F=-L+\\ 11	Vono	图 1, R=50 Ω (RS-2	122)	2.0		VCC	7.5
差分驱动输出	V _{OD2}	图 1, R=27 Ω (RS-4	185)	1.5		VCC	伏
差分输出幅值变化(注1)	$\Delta^{ m V}_{ m OD}$	图 1,R =50 Ω orR=	-27Ω			0.2	伏
驱动器输出共模电平	VOC	图 1, R=50 Ω orR=	27 Ω		VCC/2	3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=	27 Ω			0.2	伏
输入高电平	V _{IH1}	DE, DI, \overline{RE}		2.0			伏
输入低电平	V _{IL1}	DE, DI, \overline{RE}				0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}			100		毫伏
输入电流	IIN1	DE, DI, $\overline{\textit{RE}}$ (注	2)			±1	微安
+A) _L \+' (v	Trave	DE = GND,	V _{IN} =12V			125	/th/
输入电流(Y, Z, A, B)	IIN4	Vcc=GNDor3.6V	V _{IN} =-7V	-100			微安
		-7V≤V _{OUT} ≤V _O	CC	-100			毫安
驱动器输出短路电流	Iod1	0V≤V _{OUT} ≤12	V			100	毫安
		0V≤V _{OUT} ≤V _C	С	±25			毫安
接收器							
接收器差分输入阈值电压	VTH	-7V≤V _{CM} ≤+12	2V	-200		-50	毫伏
接收器差分输入阈值电压迟滞	ΔVΤΗ				40		毫伏
接收器输出高电平	VOH	IO=-4mA, VID=1	1 V	VCC-0.6			伏
接收器输出低电平	VOL	IO=4mA, VID=-1V				0.4	伏
接收器输出高阻态漏电流	IOZR	0. 4V≤V0≤2. 4V				±1	微安
接收器输入阻抗	RIN	-7V≤VCM≤+12	2V	96			千欧 姆

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@gbdz.net

Tel: +86-25-68005828 http://www.gbdz.net

Fax: +86-25-68005835

2

3

南京国博电子股份	RS42	22 通讯	.接口芯	片					
接收器输出短路电流	IOSR	0V≤V _{RO} ≤V _{CC}		±7		±95	毫安		
供电电流									
## ## ## ## ##	Tag	No load, \overline{RE} =GND	DE=VCC		0.8	1.5			
静态供电电流	ICC	DI=GND or VCC	DE=GND		0.8	1.5	毫安		
关断电流	ISHDN	$DE = GND, \overline{RE} = Vcc$			3. 5	10	微安		
静态保护特性									
静电保护	接触放		型	±12					
		IEC 61000-4-2		112			千伏		
(Y, Z, A, B)		人体模型		±15					
静电保护(其他管脚)		人体模型		±4			千伏		

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为 参考点。

开关特性

(VCC = +3.3V ± 5%, 环境温度为 +25°C.)

参数	符号	条件	最小	典型	最大	单位
驱动器输入输出延时	tDPLH	图 3 和 5, RDIFF=54 欧姆,		10	1500	纳秒
沙 约 船 棚 八 棚 山 延 时	tDPHL	CL=54pF		10	1500	4717
驱动器输入输出延时之差	tDSKEW	图 3 和 5, RDIFF=54 欧姆,		-3	±200	纳秒
业 初奋制八制 山	USKEW	CL1=CL2=100pF		_ ₃	1200	47179
 驱动器上升、下降时间	tDR, tDF	图 3 和 5, RDIFF=54 欧姆,		20	1600	纳秒
2000年171、194月日	UK, UF	CL1=CL2=100pF		20	1000	21112
最大速率	fMAX			10		Mbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断		30	2500	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断		30	2500	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断		30	500	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF,S2 关断		30	500	纳秒
+÷-16-111-+6>-+611-711-1	tRPLH	图7和9; VID ≥2.0V; VID上		100	000	John Tolk
接收器输入输出延时	tRPHL	升下降时间小于15纳秒		120	200	纳秒
tRPLH - tRPHL 接收器	, p. gyrp	图7和9; VID ≥2.0V; VID上	1.0		1.00	A-1-T-1
输入输出延时之差	tRSKD	升下降时间小于15纳秒		10	±30	纳秒
接收器使能到输出低	tRZL	 图 2 和 8, CL= 100pF,S1 关断				纳秒
19人間区1025年11日間	TILL	д = 1 «, «Е то «рт, «т » (сы)		20	50	41.17
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	50	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF, S1 关断		20	50	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	50	纳秒
芯片关断时间	tSHDN	(注 3)		200	600	纳秒

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@gbdz.net http://www.gbdz.net

5500

5500

4000

4000

3000

3000

纳秒

纳秒

纳秒

纳秒

南京国博电子股份有	限公司		RS42
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断	
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断	

tRZH(SH

DN)

tRZL(SH

DN)

注 3: 当 RE =1, DE=0 时, WS3076 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

图 2 和 8, CL=100pF, S2 关断

图 2 和 8, CL=100pF, S1 关断

测试电路图

从芯片关断到接收器使能,

从芯片关断到接收器使能,

到输出为低电平

到输出为高电平

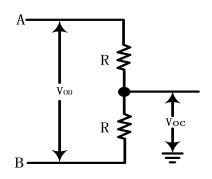


图 1 驱动器直流特性测试负载

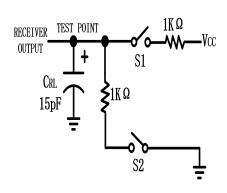


图 2 接收器使能/关断 开关特性测试负载

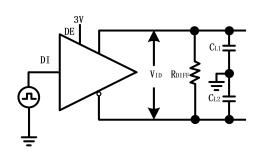


图 3 驱动器开关特性测试电路

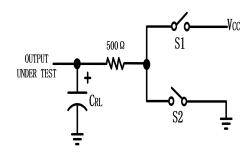


图 4 驱动器使能/关断 开关特性测试负载

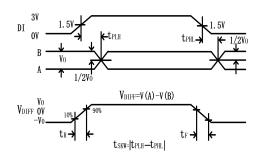


图 5 驱动器传输延时

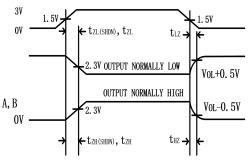


图 6 驱动器使能/关断时序

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@gbdz.net

Tel: +86-25-68005828 http://www.gbdz.net

RS422 通讯接口芯片

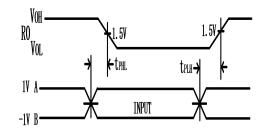


图 7 接收器传输延时

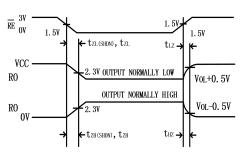


图 8 接收器使能/关断时序

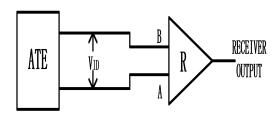
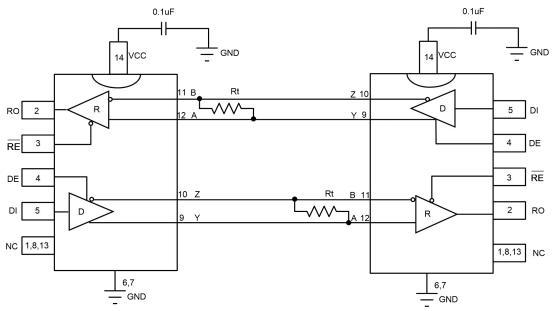



图 9 接收器传输延时测试电路

RS422 通讯接口芯片

WS3076 外围参考电路:

Rt 为特征匹配阻抗,典型值为 120Ω

图 10 WS3076 典型全双工工作电路

表 3: WS3076 引脚定义

管脚	名称	功能
1,8,13	NC	不连接
2	RO	接收器输出,接收器使能时,极性判断完成后,若 V(A)-V(B)>-50mV, RO 输出高电平;
		若 V(A)-V(B)<-200mV, RO 输出低电平。其中 A 与 B 为极性判断完成后芯片的同相和
		反相端。
3	\overline{RE}	接收器输出使能, \overline{RE} 接低电平时 RO 输出有效; \overline{RE} 接高电平时,接收器关断。 \overline{RE}
		为高电平, DE 为低电平,整个芯片处于关断状态。
4	DE	驱动器输出使能,DE 置为高电平时,驱动器使能; DE 置为低电平时,驱动器关断,驱
		动器输出为高阻态。 \overline{RE} 为高电平, DE 为低电平,整个芯片处于关断状态。
5	DI	驱动器输入,DI 为低电平时强制同相输出为低电平,反相输出为高电平;DI 为高电平
		时强制同相输出为高电平,反相输出为低电平。
6,7	GND	地
9	Y	总线接口,驱动器同相输出端
10	Z	总线接口,驱动器反相输出端

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@gbdz.net

Tel: +86-25-68005828 http://www.gbdz.net

表4: WS3076真值表

RS422 通讯接口芯片

发射								
	输入		输出					
\overline{RE}	DE	DI	Z	Y				
X	1	1	0	1				
X	1	0	1	0				
0	0	X	高阻	高阻				
1	0	X	关断					

接收								
	输入							
\overline{RE}	DE	A-B	RO					
0	X	≥ -50mV	1					
0	X	≤ - 200mV	0					
0	X	Open/shorted	1					
1	1	X	高阻					
1	0	X	关断					

表 5: WS3076 最大工作条件范围(注 1)

特性	符号	最小限定值	典型值	最大限定值	单位
最大工作电压	V_{CC}			7	V
逻辑脚电压	DE, RE, DI, RO	-0.3		7	V
总线脚电压	A, B, Y, Z	-8		13	$^{\circ}\!\mathbb{C}$
存储温度	T_{STG}	-65		+150	$^{\circ}\!\mathbb{C}$
最高结温	T_{J}			+150	°C
ESD-HBM	ESD-HBM	2000			V

注 1: 工作条件超过以上任何一个限制都可能导致器件的永久性损坏。

表 6: WS3076 推荐工作条件范围(注 2)

特性	符号	最小限定值	典型值	最大限定值	单位
推荐工作电压	V_{DD}	3	3.3/5	5.25	V
工作温度	T _A	-40		+125	$^{\circ}\!\mathbb{C}$

注 2: 超出推荐工作温度范围下工作可能会导致器件的性能恶化。

警告: 该产品为静电敏感器件,在贮存、运输、使用过程中需全程采取防静电措施。

ESD sensitive 注意: WS3076产 品在拿取、装架以 及测试过程中必 须防静电!

China·Nanjing City·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@gbdz.net Tel: +86-25-68005828 Fax: +86-25-68005835

南京国博电子股份有限公司总线负载 256 个收发器

RS422 通讯接口芯片

标准 RS-485 接收器的输入阻抗为 12KΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。WS3076 具有 1/8 单位负载的输入阻抗(96KΩ),允许最多 256 个收发器挂接在同一总线上。这些器件可任意组合,或者与其他 RS485 收发器组合使用,只要总负载不超过 32 个单位负载即可挂接在同一总线。

驱动器输出保护

两种机理实现过大电流和功耗过大保护。一个是过流保护电路,当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护,当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

热插拔功能

把芯片接入带电或者正在工作的设备时(热插拔输入),数据总线的差分干扰可能导致数据传输错误。电路插入设备时,内部启动一次上电过程,此时电路内部的逻辑输出驱动器为高阻态,无法将 DE 和 RE 输入驱动至规定的逻辑电平。驱动器在高阻态时可能会有 10uA的漏电流,这会导致电路使能输入端的 CMOS 电平漂移至不正确的逻辑电平。如果没有热插拔功能,综上的一些因素会导致电路驱动器或接收器错误的使能。WS3076 的热插拔功能可以保证在 VCC 上电过程中,内部电路保证 DE 为低电平,RE 为高电平。完成初始上电后,下拉电路不再起作用,并复位热插拔输入端。

典型应用

WS3076 应用于双向数据通信的多点网络。图 10 给出了典型的应用网络。为了降低反射,应当在传输线的两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长度应尽可能短。

静电保护

WS3076 的所有管脚均具有静电泄放保护电路来防止人手触摸或者装配时的 ESD 事件对芯片造成损坏。驱动器的输出和接收器的输入管脚采用增强的 ESD 保护电路,这些管脚可以抵抗±15kV 的人体模式 ESD 冲击而不会损坏。所有 ESD 保护电路在正常工作时均处于关断状态,并不消耗电流。ESD 事件后,WS3076 可以保证正常工作,而不会出现闩锁或损坏情况。

ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±15kV 人体模型 2) ±12kV IEC61000-4-2 接触放电。

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@gbdz.net 8

封装尺寸

SOP14 Package Dimension

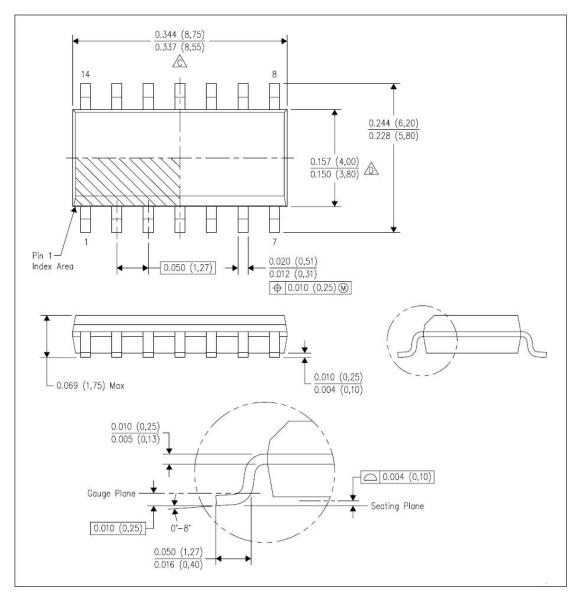


图 11 器件封装信息

包装信息

器件型号	封装形式	卷带 数量	卷带尺寸	MSL	是否贴湿 敏标签	烘烤时 间/小时	烘烤温度
WS3076	SOP14	4000	13 英寸	3	贴	6	125

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@gbdz.net

Tel: +86-25-68005828 http://www.gbdz.net

RS422 通讯接口芯片

版本信息

版本	日期	信息描述	拟制	审核	会签	批准
v1. 0	2023. 01	最初版本	黄德文	郭玮	徐慧/许悦	朱波

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@gbdz.net http://www.gbdz.net 10