

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

F²MC-16FX 16-Bit Microcontroller

CY96670 series is based on Cypress's advanced $F^2MC-16FX$ architecture (16-bit with instruction pipeline for RISC-like performance). The CPU uses the same instruction set as the established $F^2MC-16LX$ family thus allowing for easy migration of $F^2MC-16LX$ Software to the new $F^2MC-16FX$ products.

F²MC-16FX product improvements compared to the previous generation include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time.

For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed.

Features

■Technology

0.18µm CMOS

■CPU

- □ F2MC-16FX CPU
- □ Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, variety of pointers)
- □ 8-byte instruction queue
- □ Signed multiply (16-bit × 16-bit) and divide (32-bit/16-bit) instructions available

■System clock

- ☐ On-chip PLL clock multiplier (×1 to ×8, ×1 when PLL stop)
- □ 4MHz to 8MHz crystal oscillator
- (maximum frequency when using ceramic resonator depends on Q-factor)
- □ Up to 8MHz external clock for devices with fast clock input feature
- □ 32.768kHz subsystem quartz clock
- □ 100kHz/2MHz internal RC clock for quick and safe startup, clock stop detection function, watchdog
- □ Clock source selectable from mainclock oscillator, subclock oscillator and on-chip RC oscillator, independently for CPU and 2 clock domains of peripherals
- ☐ The subclock oscillator is enabled by the Boot ROM program controlled by a configuration marker after a Power or External reset
- □ Low Power Consumption 13 operating modes (different Run, Sleep, Timer, Stop modes)

■On-chip voltage regulator

Internal voltage regulator supports a wide MCU supply voltage range (Min=2.7V), offering low power consumption

■Low voltage detection function

Reset is generated when supply voltage falls below programmable reference voltage

■Code Security

Protects Flash Memory content from unintended read-out

■ DMA

Automatic transfer function independent of CPU, can be assigned freely to resources

■ Interrupts

- □ Fast Interrupt processing
- □ 8 programmable priority levels
- □ Non-Maskable Interrupt (NMI)

■CAN

- □ Supports CAN protocol version 2.0 part A and B
- □ ISO16845 certified
- ☐ Bit rates up to 1Mbps
- □ 32 message objects
- ☐ Each message object has its own identifier mask
- □ Programmable FIFO mode (concatenation of message objects)
- □ Maskable interrupt
- □ Disabled Automatic Retransmission mode for Time Triggered CAN applications
- □ Programmable loop-back mode for self-test operation

■USART

- ☐ Full duplex USARTs (SCI/LIN)
- □ Wide range of baud rate settings using a dedicated reload timer
- □ Special synchronous options for adapting to different synchronous serial protocols
- □ LIN functionality working either as master or slave LIN device
- □ Extended support for LIN-Protocol to reduce interrupt load

■I²C

- □ Up to 400kbps
- ☐ Master and Slave functionality, 7-bit and 10-bit addressing

■A/D converter

- □ SAR-type
- □ 8/10-bit resolution
- □ Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- □ Range Comparator Function
- □ Scan Disable Function
- □ ADC Pulse Detection Function

■ Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

■ Hardware Watchdog Timer

- ☐ Hardware watchdog timer is active after reset
- □ Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

■ Reload Timers

- □ 16-bit wide
- □ Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- □ Event count function

■Free-Running Timers

- □ Signals an interrupt on overflow
- □ Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁻, 1/2⁶ of peripheral clock frequency

■Input Capture Units

- □ 16-bit wide
- □ Signals an interrupt upon external event
- □ Rising edge, falling edge or both (rising & falling) edges sensitive

■ Programmable Pulse Generator

- □ 16-bit down counter, cycle and duty setting registers
- ☐ Can be used as 2 x 8-bit PPG
- □ Interrupt at trigger, counter borrow and/or duty match
- □ PWM operation and one-shot operation
- □ Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- □ Can be triggered by software or reload timer
- ☐ Can trigger ADC conversion
- ☐ Timing point capture

■ Stepping Motor Controller

- □ Stepping Motor Controller with integrated high current output drivers
- □ Four high current outputs for each channel
- □ Two synchronized 8/10-bit PWMs per channel
- □ Internal prescaling for PWM clock: 1, 1/4, 1/5, 1/6, 1/8, 1/10, 1/12, 1/16 of peripheral clock
- □ Dedicated power supply for high current output drivers

■LCD Controller

- □ LCD controller with up to 4COM x 24SEG
- □ Internal or external voltage generation
- □ Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
- □ Fixed 1/3 bias
- □ Programmable frame period
- □ Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock)
- □ Internal divider resistors or external divider resistors
- □ On-chip data memory for display
- □ LCD display can be operated in Timer Mode
- □ Blank display: selectable
- □ All SEG, COM and V pins can be switched between general and specialized purposes

■ Sound Generator

- □ 8-bit PWM signal is mixed with tone frequency from 16-bit reload counter
- □ PWM clock by internal prescaler: 1, 1/2, 1/4, 1/8 of peripheral clock

■ Real Time Clock

- □ Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- □ Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- □ Read/write accessible second/minute/hour registers
- □ Can signal interrupts every half second/second/minute/ hour/day
- $\hfill \square$ Internal clock divider and prescaler provide exact 1s clock

■External Interrupts

- □ Edge or Level sensitive
- □ Interrupt mask bit per channel
- □ Each available CAN channel RX has an external interrupt for wake-up
- □ Selected USART channels SIN have an external interrupt for wake-up

■Non Maskable Interrupt

- □ Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- □ Once enabled, can not be disabled other than by reset
- ☐ High or Low level sensitive
- □ Pin shared with external interrupt 0

■I/O Ports

- $\hfill\square$ Most of the external pins can be used as general purpose I/O
- ☐ All push-pull outputs (except when used as I2C SDA/SCL line)
- ☐ Bit-wise programmable as input/output or peripheral signal
- ☐ Bit-wise programmable input enable
- ☐ One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- ☐ Bit-wise programmable pull-up resistor

- ■Built-in On Chip Debugger (OCD)
 - □ One-wire debug tool interface
 - ☐ Break function:
 - · Hardware break: 6 points (shared with code event)
 - · Software break: 4096 points
 - □ Event function
 - Code event: 6 points (shared with hardware break)
 - · Data event: 6 points
 - Event sequencer: 2 levels + reset
 - □ Execution time measurement function
 - □ Trace function: 42 branches
 - □ Security function

■Flash Memory

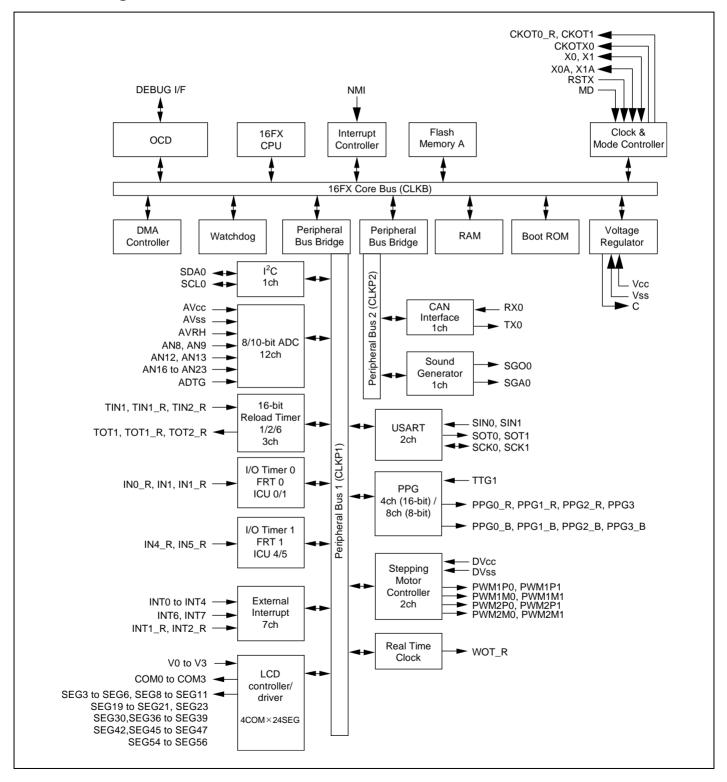
- □ Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- □ Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- □ Supports automatic programming, Embedded Algorithm
- □ Write/Erase/Erase-Suspend/Resume commands
- ☐ A flag indicating completion of the automatic algorithm
- ☐ Erase can be performed on each sector individually
- □ Sector protection
- □ Flash Security feature to protect the content of the Flash
- □ Low voltage detection during Flash erase or write

Contents

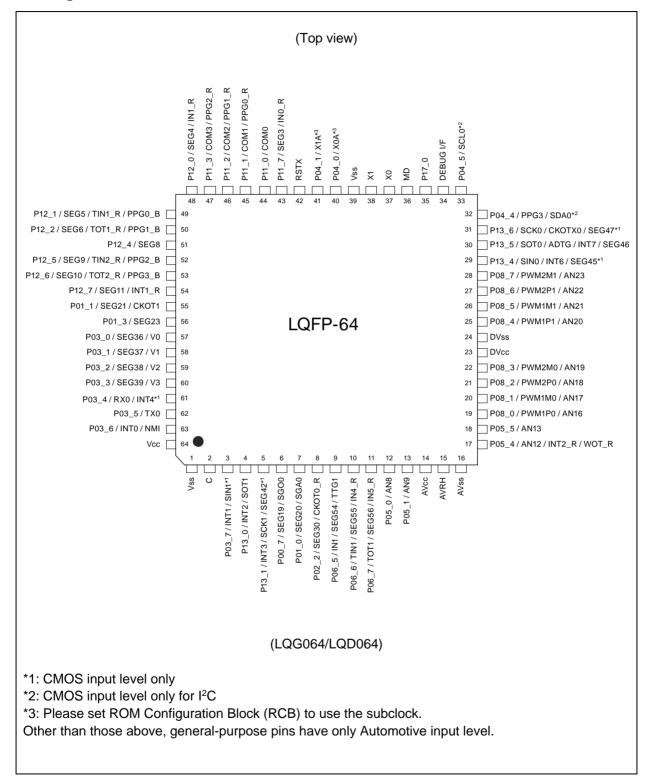
1. P	roduct Lineup	5
2. B	lock Diagram	6
3. P	in Assignment	7
4. P	in Description	8
5. P	in Circuit Type	10
6. I/	O Circuit Type	12
7. M	emory Map	18
8. R	AMSTART Addresses	19
9. U	ser ROM Memory Map For Flash Devices	20
10. S	erial Programming Communication Interface	21
	terrupt Vector Table	
12. H	andling Precautions	25
12.1	Precautions for Product Design	25
12.2	Precautions for Package Mounting	26
12.3	Precautions for Use Environment	27
13. H	andling Devices	28
13.1	Latch-Up Prevention	28
13.2	Unused Pins Handling	
13.3	External Clock Usage	28
13.4	Notes on PLL Clock Mode Operation	29
13.5	Power Supply Pins (Vcc/Vss)	29
13.6	Crystal Oscillator and ceramic resonator Circuit	29
13.7	Turn on Sequence of Power Supply to A/D Conve	rter
	and Analog Inputs	29

13.8	Pin Handling when not using the A/D Converter	29	
13.9	Notes on Power-on	29	
13.10	Stabilization of Power Supply Voltage	30	
13.11	SMC Power Supply Pins	30	
13.12	Serial Communication	30	
13.13	Mode Pin (MD)	30	
	ectrical Characteristics		
14.1	Absolute Maximum Ratings	31	
14.2	Recommended Operating Conditions	33	
14.3	DC Characteristics		
14.4	AC Characteristics	39	
14.5	A/D Converter	47	
14.6	High Current Output Slew Rate	51	
14.7	Low Voltage Detection Function Characteristics	51	
14.8	Flash Memory Write/Erase Characteristics	53	
15. Example Characteristics5			
16. Or	dering Information	57	
17. Pa	ckage Dimension	58	
18. Major Changes			
Document History6			
Sales	Sales Solutions and Legal Information		

1. Product Lineup


Real Time Clock (RTC) 1ch 1/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function Low Voltage Detection Function Hardware Watchdog Timer On-chip RC-oscillator 1ch Low 39/42/45 to 47/54 to 56 Low Voltage Detection Function 48 (Dual clock mode) 50 (Single clock mode) 1ch Low voltage detection function can be disabled by software	Features		CY96670	Remark	
Dual Operation Flash Memory RAM C.496F673A Product Options R: MCU with CAN A: MCU with CA	Product Type		Flash Memory Product		
64.5KB + 32KB	Subclock		•		
128.5KB + 32KB	Dual Opera	ation Flash Memory	RAM	-	
128.5KB + 32KB	64.5KB + 3	32KB	4KB	CY96F673R, CY96F673A	
DMA	128.5KB +	32KB	4KB	CY96F675R, CY96F675A	
USART	Package				
with automatic LIN-Header transmission/reception transmission/reception with 16 byte RX- and TX-FIFO No	DMA			2ch	
transmission/reception Yes (only 1ch) LIN-USART 0	USART			2ch	LIN-USART 0/1
FC			er	Yes (only 1ch)	LIN-USART 0
8/10-bit A/D Converter 12ch		with 16 byte RX- and TX	-FIFO	No	
with Data Buffer No with Range Comparator Yes With Scan Disable Yes With ADC Pulse Detection Yes	I ² C			1ch	I ² C 0
with Range Comparator with Scan Disable Yes Image: Comparator with Scan Disable Yes with ADC Pulse Detection Yes Incomparator with Scan Disable Yes 16-bit Reload Timer (RLT) 3ch RLT 1/2/6 16-bit Free-Running Timer (FRT) 2ch FRT 0/1 16-bit Input Capture Unit (ICU) 4ch (2 channels for LIN-USART) (CU 0/1/4/5 (CU 0/1 for LIN-USART) ICU 0/1/4/5 (CU 0/1 for LIN-USART) 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 with Timing point capture with Start delay No No with Start delay No CAN Interface 1ch 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 48 (Dual clock mode) SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software	8/10-bit A/I	O Converter		12ch	AN 8/9/12/13/16 to 23
with Scan Disable Yes with ADC Pulse Detection Yes 16-bit Reload Timer (RLT) 3ch RLT 1/2/6 16-bit Free-Running Timer (FRT) 2ch FRT 0/1 16-bit Input Capture Unit (ICU) 4ch (2 channels for LIN-USART) ICU 0/1/4/5 ICU 0/1 for LIN-USART 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 with Timing point capture Yes with Start delay No with Ramp No CAN Interface 1ch 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 LCD Controller 4COM x 24SEG SEG 3 to 6/8 to 11/1/9 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch COM 0 to 3 Real Time Clock (RTC) 1ch COM 0 to 3 Clock Calibration Unit (CAL) 1ch Commode of the com		with Data Buffer		No	
with ADC Pulse Detection Yes 16-bit Reload Timer (RLT) 3ch RLT 1/2/6 16-bit Free-Running Timer (FRT) 2ch FRT 0/1 16-bit Input Capture Unit (ICU) 4ch ICU 0/1/4/5 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 with Timing point capture Yes Ves with Start delay No CAN 0 with Ramp No CAN 0 CAN Interface 1ch 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 LCD Controller 4COM x 24SEG SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch COM 0 to 3 I/O Ports 48 (Dual clock mode) SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software <td></td> <td>with Range Comparator</td> <td></td> <td>Yes</td> <td></td>		with Range Comparator		Yes	
16-bit Reload Timer (RLT) 3ch RLT 1/2/6 16-bit Free-Running Timer (FRT) 2ch FRT 0/1 16-bit Input Capture Unit (ICU) 4ch (2 channels for LIN-USART) ICU 0/11/4/5 ICU 0/11 for LIN-USART 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 with Timing point capture Yes with Start delay No with Ramp No		with Scan Disable		Yes	
16-bit Free-Running Timer (FRT) 2ch FRT 0/1 16-bit Input Capture Unit (ICU) 4ch (2 channels for LIN-USART) ICU 0/1/4/5 ICU 0/1 for LIN-USART 8/16-bit Programmable Pulse Generator (PPG) 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 with Timing point capture Yes with Start delay No with Ramp No CAN Interface 1ch 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 LCD Controller 4COM x 24SEG COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch Low voltage detection function can be disabled by software Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes Low voltage detection function can be disabled by software		with ADC Pulse Detectio	n	Yes	
16-bit Input Capture Unit (ICU)	16-bit Relo	ad Timer (RLT)		3ch	RLT 1/2/6
16-bit Input Capture Unit (ICU)	16-bit Free	-Running Timer (FRT)		2ch	FRT 0/1
with Timing point capture Yes with Start delay No with Ramp No CAN Interface 1ch CAN 0 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 Sound Generator (SG) 1ch SG 0 LCD Controller 4COM × 24SEG COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 I/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes Cond of the control of the contr	16-bit Inpu	t Capture Unit (ICU)			
with Start delay No with Ramp No CAN Interface 1ch CAN 0 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 Sound Generator (SG) 1ch SG 0 LCD Controller 4COM × 24SEG SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 48 (Dual clock mode) I/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software Low Voltage Detection Function Yes Low voltage detection function can be disabled by software	8/16-bit Pr	ogrammable Pulse Genera	tor (PPG)	4ch (16-bit) / 8ch (8-bit)	PPG 0 to 3
With Ramp No CAN Interface 1ch CAN 0 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 Sound Generator (SG) 1ch SG 0 LCD Controller 4COM × 24SEG COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch Interpretation I/O Ports 48 (Dual clock mode) 50 (Single clock mode) 50 (Single clock mode) Interpretation Clock Calibration Unit (CAL) 1ch Interpretation Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes Yes	with Timing point capture		Yes		
CAN Interface 1ch CAN 0 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 COM 0 to 3 COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 1ch I/O Ports 48 (Dual clock mode) 50 (Single clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes Low voltage detection function can be disabled by software	with Start delay		No		
CAN Interface 1ch 32 Message Buffers Stepping Motor Controller (SMC) 2ch SMC 0/1 External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 Sound Generator (SG) 1ch SG 0 LCD Controller 4COM x 24SEG SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 48 (Dual clock mode) I/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes Yes On-chip RC-oscillator Yes	with Ramp		No		
External Interrupts (INT) 7ch INT 0 to 4/6/7 Non-Maskable Interrupt (NMI) 1ch SG 0 Sound Generator (SG) 1ch SG 0 LCD Controller 4COM × 24SEG COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 48 (Dual clock mode) S0 (Single clock mode) I/O Ports 48 (Dual clock mode) S0 (Single clock mode) Low Voltage Detection Function Clock Calibration Unit (CAL) 1ch Low voltage detection function can be disabled by software Low Voltage Detection Function Yes Low voltage detection function can be disabled by software On-chip RC-oscillator Yes Interval of the control of the contr	CAN Interf	ace		1ch	
Non-Maskable Interrupt (NMI) Sound Generator (SG) 1ch SG 0 COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function 2ch Low Voltage Detection Function Yes Non-chip RC-oscillator 1ch Low Voltage Detection Function Yes Low Voltage Detection function can be disabled by software	Stepping N	Notor Controller (SMC)		2ch	SMC 0/1
Sound Generator (SG) LCD Controller 4COM × 24SEG COM 0 to 3 SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 1/O Ports 48 (Dual clock mode) 50 (Single clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function 2ch Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer On-chip RC-oscillator Yes	External In	terrupts (INT)		7ch	INT 0 to 4/6/7
LCD Controller 4COM × 24SEG SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function 2ch Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes On-chip RC-oscillator Yes	Non-Maska	able Interrupt (NMI)		1ch	
LCD Controller 4COM × 24SEG SEG 3 to 6/8 to 11/19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Real Time Clock (RTC) 1ch 1/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function 2ch Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer On-chip RC-oscillator Yes	Sound Ger	nerator (SG)		1ch	SG 0
I/O Ports 48 (Dual clock mode) 50 (Single clock mode) Clock Calibration Unit (CAL) 1ch Clock Output Function 2ch Low Voltage Detection Function Yes Hardware Watchdog Timer Yes On-chip RC-oscillator Yes	LCD Controller		4COM × 24SEG	SEG 3 to 6/8 to 11/19 to 21/23/30/36	
Clock Calibration Unit (CAL) Clock Output Function Low Voltage Detection Function Hardware Watchdog Timer On-chip RC-oscillator 50 (Single clock mode) 1ch Low Voltage Lock mode) 1ch Yes Low voltage detection function can be disabled by software	Real Time Clock (RTC)		1ch		
Clock Output Function 2ch Low Voltage Detection Function Yes Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes On-chip RC-oscillator Yes	I/O Ports				
Low Voltage Detection FunctionYesLow voltage detection function can be disabled by softwareHardware Watchdog TimerYesOn-chip RC-oscillatorYes	Clock Calibration Unit (CAL)		1ch		
Hardware Watchdog Timer On-chip RC-oscillator Yes be disabled by software Yes Ves	Clock Output Function		2ch		
On-chip RC-oscillator Yes	Low Voltage Detection Function		Yes		
On-chip RC-oscillator Yes	Hardware '	Watchdog Timer		Yes	
On-chip Debugger Ves				Yes	
On only bedayyer 165	On-chip De	ebugger		Yes	

Note:


All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.

2. Block Diagram

3. Pin Assignment

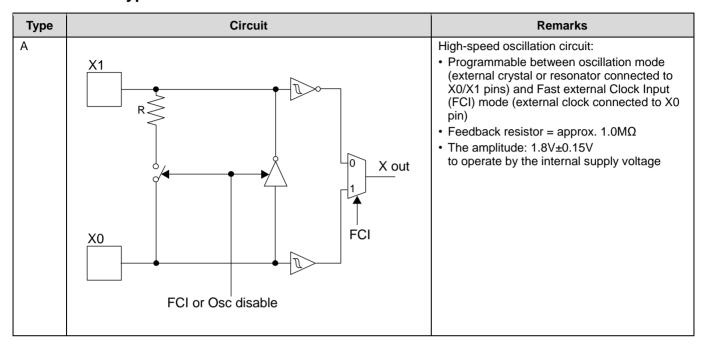
4. Pin Description

Pin Name	Feature	Description
ADTG	ADC	A/D converter trigger input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
COMn	LCD	LCD Common driver pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
DVcc	Supply	SMC pins power supply
DVss	Supply	SMC pins power supply
INn	ICU	Input Capture Unit n input pin
INn_R	ICU	Relocated Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R	PPG	Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PWMn	SMC	SMC PWM high current output pin
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCLn	I ² C	I ² C interface n clock I/O input/output pin
SDAn	I ² C	I ² C interface n serial data I/O input/output pin
SEGn	LCD	LCD Segment driver pin
SGAn	Sound Generator	Sound Generator amplitude output pin
SGOn	Sound Generator	Sound Generator sound/tone output pin
SINn	USART	USART n serial data input pin
SOTn	USART	USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TINn_R	Reload Timer	Relocated Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TOTn_R	Reload Timer	Relocated Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
Vn	LCD	LCD voltage reference pin
Vcc	Supply	Power supply pin
Vss	Supply	Power supply pin
WOT_R	RTC	Relocated Real Time clock output pin

Pin Name	Feature	Description	
X0	Clock	Oscillator input pin	
X0A	Clock	Subclock Oscillator input pin	
X1	Clock	Oscillator output pin	
X1A	Clock	Subclock Oscillator output pin	

5. Pin Circuit Type

Pin No.	I/O Circuit Type*	Pin Name
1	Supply	Vss
2	F	С
3	M	P03_7 / INT1 / SIN1
4	Н	P13_0 / INT2 / SOT1
5	Р	P13_1 / INT3 / SCK1 / SEG42
6	J	P00_7 / SEG19 / SGO0
7	J	P01_0 / SEG20 / SGA0
8	J	P02_2 / SEG30 / CKOT0_R
9	J	P06_5 / IN1 / SEG54 / TTG1
10	J	P06_6 / TIN1 / SEG55 / IN4_R
11	J	P06_7 / TOT1 / SEG56 / IN5_R
12	К	P05_0 / AN8
13	К	P05_1 / AN9
14	Supply	AVcc
15	G	AVRH
16	Supply	AVss
17	К	P05_4 / AN12 / INT2_R / WOT_R
18	К	P05_5 / AN13
19	R	P08_0 / PWM1P0 / AN16
20	R	P08_1 / PWM1M0 / AN17
21	R	P08_2 / PWM2P0 / AN18
22	R	P08_3 / PWM2M0 / AN19
23	Supply	DVcc
24	Supply	DVss
25	R	P08_4 / PWM1P1 / AN20
26	R	P08_5 / PWM1M1 / AN21
27	R	P08_6 / PWM2P1 / AN22
28	R	P08_7 / PWM2M1 / AN23
29	P	P13_4 / SIN0 / INT6 / SEG45
30	J	P13_5 / SOT0 / ADTG / INT7 / SEG46
31	P	P13_6 / SCK0 / CKOTX0 / SEG47
32	N	P04_4 / PPG3 / SDA0
33	N	P04_5 / SCL0
34	0	DEBUG I/F
35	Н	P17_0
36	С	MD
37	A	X0
38	A	X1
39	Supply	Vss
40	В	P04_0 / X0A
41	В	P04_1 / X1A
42	С	RSTX
43	J	P11_7 / SEG3 / IN0_R
44	J	P11_0 / COM0



Pin No.	I/O Circuit Type*	Pin Name
45	J	P11_1 / COM1 / PPG0_R
46	J	P11_2 / COM2 / PPG1_R
47	J	P11_3 / COM3 / PPG2_R
48	J	P12_0 / SEG4 / IN1_R
49	J	P12_1 / SEG5 / TIN1_R / PPG0_B
50	J	P12_2 / SEG6 / TOT1_R / PPG1_B
51	J	P12_4 / SEG8
52	J	P12_5 / SEG9 / TIN2_R / PPG2_B
53	J	P12_6 / SEG10 / TOT2_R / PPG3_B
54	J	P12_7 / SEG11 / INT1_R
55	J	P01_1 / SEG21 / CKOT1
56	J	P01_3 / SEG23
57	L	P03_0 / SEG36 / V0
58	L	P03_1 / SEG37 / V1
59	L	P03_2 / SEG38 / V2
60	L	P03_3 / SEG39 / V3
61	M	P03_4 / RX0 / INT4
62	Н	P03_5 / TX0
63	Н	P03_6 / INT0 / NMI
64	Supply	Vcc

^{*:} See "I/O CIRCUIT TYPE" for details on the I/O circuit types.

6. I/O Circuit Type

Туре	Circuit	Remarks
F	P-ch N-ch	Power supply input protection circuit
G	P-ch N-ch	 A/D converter ref+ (AVRH) power supply input pin with protection circuit Without protection circuit against V_{CC} for pins AVRH
H	Pull-up control P-ch P-ch P-ch Nout Automotive input	 CMOS level output (IoL = 4mA, IoH = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
J	Pull-up control P-ch P-ch P-ch Nout Automotive input for input shutdown SEG or COM output	CMOS level output (IoL = 4mA, IoH = -4mA) Automotive input with input shutdown function Programmable pull-up resistor SEG or COM output

Туре	Circuit	Remarks
K	Pull-up control	CMOS level output (IoL = 4mA, IoH = -4mA) Automotive input with input shutdown
	P-ch P-ch Pout	function • Programmable pull-up resistor • Analog input
	N-ch Nout	
	Standby control for input shutdown	
	Analog input	
L	Pull-up control	CMOS level output (IoL = 4mA, IoH = -4mA) Automotive input with input shutdown function
	P-ch P-ch Pout	Programmable pull-up resistor Vn input or SEG output
	N-ch Nout	
	Standby control Automotive input for input shutdown	
	Vn input or SEG output	
M	Pull-up control	CMOS level output (IoL = 4mA, IoH = -4mA) CMOS hysteresis input with input shutdown function
	P-ch P-ch Pout	Programmable pull-up resistor
	N-ch Nout	
	Standby control Thysteresis input for input shutdown	

Туре	Circuit	Remarks
N	Pull-up control	CMOS level output (IoL = 3mA, IoH = -3mA) CMOS hysteresis input with input shutdown function
	P-ch P-ch Pout	Programmable pull-up resistor *: N-channel transistor has slew rate control according to I ² C spec, irrespective of usage.
	N-ch Nout* R AAA Hysteresis input	
	Standby control To Trysteresis input for input shutdown	
0	N-ch Nout	Open-drain I/O Output 25mA, Vcc = 2.7V TTL input
	Standby control TTL input for input shutdown	
P	Pull-up control	CMOS level output (IoL = 4mA, IoH = -4mA) CMOS hysteresis inputs with input shutdown function
	P-ch P-ch Pout	Programmable pull-up resistor SEG or COM output
	N-ch Nout R Hysteresis input	
	Standby control VVV SEG or COM output	

Туре	Circuit	Remarks
R	Pull-up control	• CMOS level output (programmable IoL = 4mA, IoH = -4mA and IoL = 30mA, IoH = -30mA)
	P-ch P-ch Pout	Automotive input with input shutdown function Programmable pull-up / pull-down resistor
	N-ch N-ch Nout	Analog input
	Pull-down control	
	Standby control for input shutdown	
	Analog input	

7. Memory Map

FF:FFFF _H DE:0000 _H	USER ROM*1
DD:FFFF _H	Reserved
10:0000 _H	_
0F:C000 _H	Boot-ROM
0E:9000 _H	Peripheral
01:0000 _H	Reserved
	ROM/RAM
00:8000 _H	MIRROR
RAMSTART0*2	Internal RAM bank0
00:0С00 _Н	Reserved
00:0380 _Н	Peripheral
00:0180 _H	GPR*3
00:0100 _H	DMA
00:00F0 _H	Reserved
00:0000 _H	Peripheral

^{*1:} For details about USER ROM area, see "User ROM Memory Map For Flash Devices" on the following pages.

GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM area depends on the device.

^{*2:} For RAMSTART addresses, see the table on the next page.

^{*3:} Unused GPR banks can be used as RAM area.

8. RAMSTART Addresses

Devices	Bank 0 RAM Size	RAMSTART0
CY96F673 CY96F675	4KB	00:7200н

9. User ROM Memory Map For Flash Devices

CPU mode address	Flash memory mode address	CY96F673 Flash size 64.5KB + 32KB	CY96F675 Flash size 128.5KB + 32KB	
FF:FFFF _H FF:0000 _H	3F:FFFF _H 3F:0000 _H	SA39 - 64KB	SA39 - 64KB	David A of Elect
FE:FFFF _H FE:0000 _H	3E:FFFF _H 3E:0000 _H		SA38 - 64KB	Bank A of Flash
FD:FFFF _H		Reserved	Reserved	
DF:9FFF _H DF:8000 _H	1F:9FFF _H 1F:8000 _H	SA4 - 8KB	SA4 - 8KB	
DF:7FFF _H DF:6000 _H	1F:7FFF _H 1F:6000 _H	SA3 - 8KB	SA3 - 8KB	Bank B of Flash
DF:5FFF _H DF:4000 _H	1F:5FFF _H 1F:4000 _H	SA2 - 8KB	SA2 - 8KB	Dalik D OI Flasi
DF:3FFF _H DF:2000 _H	1F:3FFF _H 1F:2000 _H	SA1 - 8KB	SA1 - 8KB	
DF:1FFF _H DF:0000 _H	1F:1FFF _H 1F:0000 _H	SAS - 512B*	SAS - 512B*	Bank A of Flash
DE:FFFF _H DE:0000 _H		Reserved	Reserved	

^{*:} Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H.

Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B.

Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H.

SAS can not be used for E²PROM emulation.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

CY96670								
Pin Number	USART Number	Normal Function						
29		SIN0						
30	USART0	SOT0						
31		SCK0						
3		SIN1						
4	USART1	SOT1						
5		SCK1						

11. Interrupt Vector Table

Vector Number	Offset in Vector Table	Vector Name		Description	
0	3FСн	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4н	CALLV2	No	-	CALLV instruction
3	3F0н	CALLV3	No	-	CALLV instruction
4	3ЕСн	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3Е0н	CALLV7	No	-	CALLV instruction
8	3DСн	RESET	No	-	Reset vector
9	3D8н	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0н	NMI	No	-	Non-Maskable Interrupt
12	3ССн	DLY	No	12	Delayed Interrupt
13	3С8н	RC_TIMER	No	13	RC Clock Timer
14	3С4н	MC_TIMER	No	14	Main Clock Timer
15	3С0н	SC_TIMER	No	15	Sub Clock Timer
16	3ВСн	LVDI	No	16	Low Voltage Detector
17	3В8н	EXTINT0	Yes	17	External Interrupt 0
18	3В4н	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _H	EXTINT2	Yes	19	External Interrupt 2
20	ЗАСн	EXTINT3	Yes	20	External Interrupt 3
21	3А8н	EXTINT4	Yes	21	External Interrupt 4
22	3А4н	-	-	22	Reserved
23	3А0н	EXTINT6	Yes	23	External Interrupt 6
24	39Сн	EXTINT7	Yes	24	External Interrupt 7
25	398н	-	-	25	Reserved
26	394н	-	-	26	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
27	390н	-	-	27	Reserved
28	38Сн	-	-	28	Reserved
29	388н	-	-	29	Reserved
30	384 _H	-	-	30	Reserved
31	380н	-	-	31	Reserved
32	37Сн	-	-	32	Reserved
33	378н	CAN0	No	33	CAN Controller 0
34	374 _H	-	-	34	Reserved
35	370 _H	-	-	35	Reserved
36	36Сн	-	-	36	Reserved
37	368н	-	-	37	Reserved
38	364н	PPG0	Yes	38	Programmable Pulse Generator 0
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1
40	35Сн	PPG2	Yes	40	Programmable Pulse Generator 2
41	358н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354н	-	-	42	Reserved
43	350 _H	-	-	43	Reserved
44	34C _H	-	-	44	Reserved
45	348н	-	-	45	Reserved
46	344н	-	-	46	Reserved
47	340н	-	-	47	Reserved
48	33C _H	-	-	48	Reserved
49	338н	-	-	49	Reserved
50	334н	-	-	50	Reserved
51	330н	-	-	51	Reserved
52	32Сн	-	-	52	Reserved
53	328 _H	-	-	53	Reserved
54	324н	-	-	54	Reserved
55	320н	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318н	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310н	RLT1	Yes	59	Reload Timer 1
60	30Сн	RLT2	Yes	60	Reload Timer 2
61	308н	-	-	61	Reserved
62	304 _H	-	-	62	Reserved
63	300н	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8н	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
	1	1	ı	1 -	

Jnit 4 Jnit 5
Jnit 5
-
imer 0
imer 1
k
on Unit
or 0
0
RX
X
RX
X
T R

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
109	248н	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240н	-	-	111	Reserved
112	23Сн	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234н	-	-	114	Reserved
115	230н	-	-	115	Reserved
116	22C _H	-	-	116	Reserved
117	228н	-	-	117	Reserved
118	224н	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21Сн	-	-	120	Reserved
121	218н	-	-	121	Reserved
122	214 _H	-	-	122	Reserved
123	210н	-	-	123	Reserved
124	20Сн	-	-	124	Reserved
125	208н	-	-	125	Reserved
126	204н	-	-	126	Reserved
127	200н	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0н	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1Е0н	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _Н	-	-	137	Reserved
138	1D4 _H	-	-	138	Reserved
139	1D0н	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	ADCPD0	No	140	A/D Converter 0 - Pulse detection
141	1C8 _H	-	-	141	Reserved
142	1С4н	-	-	142	Reserved
143	1С0н	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- 3. Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■ Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■ Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

■Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

- 1. Humidity
 - Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
- 2. Discharge of Static Electricity
 - When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
- 3. Corrosive Gases, Dust, or Oil
 - Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- 4. Radiation, Including Cosmic Radiation
 - Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- 5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13. Handling Devices

Special Care is Required for the Following when Handling the Device:

- · Latch-up prevention
- · Unused pins handling
- · External clock usage
- · Notes on PLL clock mode operation
- · Power supply pins (Vcc/Vss)
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- · Notes on Power-on
- · Stabilization of power supply voltage
- · SMC power supply pins
- · Serial communication
- Mode Pin (MD)

13.1 Latch-Up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

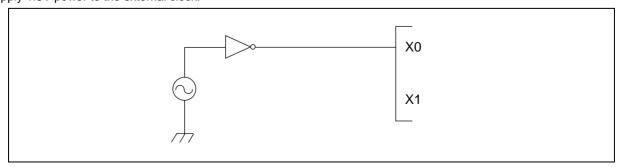
For the same reason, extra care is required to not let the analog power-supply voltage (AVcc, AVRH) exceed the digital power-supply voltage.

13.2 Unused Pins Handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

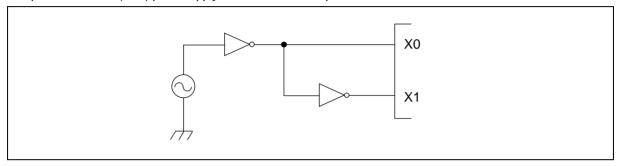

13.3 External Clock Usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single Phase External Clock for Main Oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.



13.3.2 Single Phase External Clock for Sub Oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

13.3.3 Opposite Phase External Clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL Clock Mode Operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power Supply Pins (Vcc/Vss)

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about $0.1\mu F$ between Vcc and Vss pins as close as possible to Vcc and Vss pins.

13.6 Crystal Oscillator and ceramic resonator Circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AVcc . Input voltage for ports shared with analog input ports also must not exceed AVcc (turning the analog and digital power supplies simultaneously on or off is acceptable).

13.8 Pin Handling when not using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of Power Supply Voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11SMC Power Supply Pins

All DVcc /DVss pins must be set to the same level as the Vcc /Vss pins.

Note that the SMC I/O pin state is undefined if DV $_{CC}$ is powered on and V $_{CC}$ is below 3V. To avoid this, V $_{CC}$ must always be powered on before DV $_{CC}$.

DVcc/DVss must be applied when using SMC I/O pin as GPIO.

13.12Serial Communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

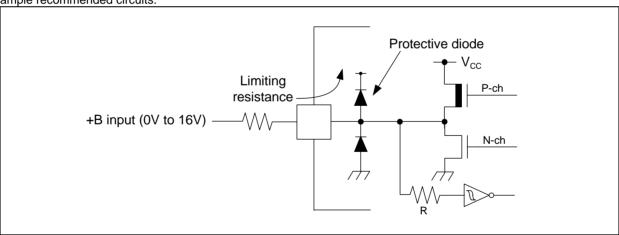
13.13 Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

B		0	Ra	ating				
Parameter	Symbol	Condition	Min	Max	Unit	Remarks		
Power supply voltage*1	Vcc	-	Vss - 0.3	Vss + 6.0	V			
Analog power supply voltage*1	AVcc	-	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2		
Analog reference voltage*1	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}		
SMC Power supply*1	DVcc	-	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc= DVcc*2		
LCD power supply voltage*1	V0 to V3	-	Vss - 0.3	Vss + 6.0	V	V0 to V3 must not exceed Vcc		
Input voltage*1	Vı	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le (D)V_{CC} + 0.3V^{*3}$		
Output voltage*1	Vo	-	Vss - 0.3	Vss + 6.0	V	$V_0 \le (D)V_{CC} + 0.3V^{*3}$		
Maximum Clamp Current	ICLAMP	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins *4		
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	16	mA	Applicable to general purpose I/O pins *4		
	I _{OL}	-	-	15	mA	Normal port		
		T _A = -40°C	-	52	mA			
"L" level maximum output current		T _A = +25°C	-	39	mA	Lligh ourrent port		
Current	lolsmc	T _A = +85°C	-	32	mA	High current port		
		T _A = +105°C	-	30	mA			
	I _{OLAV}	-	-	4	mA	Normal port		
	IOLAVSMC	T _A = -40°C	-	40	mA			
"L" level average output current		T _A = +25°C	-	30	mA	Link accordance		
		T _A = +85°C	-	25	mA	High current port		
		T _A = +105°C	-	23	mA			
"L" level maximum overall	Σl _{OL}	-	-	34	mA	Normal port		
output current	Σlolsmc	-	-	180	mA	High current port		
"L" level average overall output	ΣI _{OLAV}	-	-	17	mA	Normal port		
current	ΣI _{OLAVSMC}	-	-	90	mA	High current port		
	Іон	-	-	-15	mA	Normal port		
		T _A = -40°C	-	-52	mA			
"H" level maximum output current	lavava	T _A = +25°C	-	-39	mA	High ourrent port		
Current	Iонѕмс	T _A = +85°C	-	-32	mA	High current port		
		T _A = +105°C	-	-30	mA			
	Іонач	-	-	-4	mA	Normal port		
		T _A = -40°C	-	-40	mA			
"H" level average output current	١.	T _A = +25°C	-	-30	mA	Lieb accompant want		
Current	IOHAVSMC	T _A = +85°C	-	-25	mA	High current port		
		T _A = +105°C	-	-23	mA			
"H" level maximum overall	ΣІон	-	-	-34	mA	Normal port		
output current	ΣI _{OHSMC}	-	-	-180	mA	High current port		
"H" level average overall output	ΣΙΟΗΑΥ	-	-	-17	mA	Normal port		
current	ΣI _{OHAVSMC}	-	-	-90	mA	High current port		
Power consumption*5	PD	T _A = +105°C	-	281 ^{*6}	mW			
Operating ambient temperature	T _A	-	-40	+105	°C			



Parameter	Symbol	Condition	Ra	ting	Unit	Remarks	
	Symbol		Min	Max	Unit	Remarks	
Storage temperature	T _{STG}	-	-55	+150	°C		

^{*1:} This parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0V$.

- · Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against Vss. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

· Sample recommended circuits:

^{*5:} The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

IA is the analog current consumption into AVCC.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} AVcc and Vcc and DVcc must be set to the same voltage. It is required that AVcc does not exceed Vcc, DVcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.

^{*3}: V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of high current ports depend on DV_{CC}. Input/Output voltages of standard ports depend on V_{CC}.

^{*4:} Applicable to all general purpose I/O pins (Pnn_m).

⁶: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

14.2 Recommended Operating Conditions

(Vss = AVss = DVss = 0V)

Parameter	Cumbal	Value			Unit	Domonico		
Parameter	Symbol	Min	Тур	Max	Unit	Remarks		
Power supply	Vcc,	2.7	-	5.5	V			
voltage	AV _{CC} , DV _{CC}	2.0	-	5.5	V	Maintains RAM data in stop mode		
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$1.0\mu F$ (Allowance within $\pm 50\%$) $3.9\mu F$ (Allowance within $\pm 20\%$) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_S .		

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

_		Pin			Value			
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 =	-	25	-	mA	T _A = +25°C
	ICCPLL		CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKRC and CLKSC stopped)	-	-	34	mA	T _A = +105°C
			Main Run mode with CLKS1/2 =	-	3.5	-	mA	T _A = +25°C
	ICCMAIN		CLKB = CLKP1/2 = 4MHz Flash 0 wait (CLKPLL, CLKSC and CLKRC stopped)	-	-	7.5	mA	T _A = +105°C
			RC Run mode with CLKS1/2 =	-	1.7	-	mA	$T_A = +25$ °C
Power supply current in Run modes*1	Іссксн	Vcc	CLKB = CLKP1/2 = CLKRC = 2MHz Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped)	-	-	5.5	mA	T _A = +105°C
		1	RC Run mode with CLKS1/2 =	-	0.15	-	mA	T _A = +25°C
	ICCRCL		CLKB = CLKP1/2 = CLKRC = 100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped)	-	-	3.2	mA	T _A = +105°C
			Sub Run mode with CLKS1/2 =		0.1	-	mA	T _A = +25°C
	Іссѕив		CLKB = CLKP1/2 = 32kHz Flash 0 wait (CLKMC, CLKPLL and CLKRC stopped)	-	-	3	mA	T _A = +105°C
			PLL Sleep mode with	-	6.5	-	mA	T _A = +25°C
	ICCSPLL		CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC stopped)	-	-	13	mA	T _A = +105°C
			Main Sleep mode with	-	0.9	-	mA	T _A = +25°C
	Iccsmain	ICCSMAIN	CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	-	4	mA	T _A = +105°C
			RC Sleep mode with CLKS1/2 =	-	0.5	-	mA	$T_A = +25^{\circ}C$
Power supply current in Sleep modes*1	Іссѕксн	Vcc	CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	-	3.5	mA	T _A = +105°C
			RC Sleep mode with CLKS1/2 =	-	0.06	-	mA	$T_A = +25$ °C
	Iccsrcl		CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and CLKSC stopped)	-	-	2.7	mA	T _A = +105°C
			Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C
	Іссѕѕив		CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC stopped)	-	-	2.5	mA	T _A = +105°C

Parameter	Symbol	Pin Name	Conditions	Value				_
				Min	Тур	Max	Unit	Remarks
Power supply current in Timer modes*2	Ісстріі		PLL Timer mode with CLKPLL =	-	1800	2245	μΑ	T _A = +25°C
			32MHz (CLKRC and CLKSC stopped)	-	-	3140	μΑ	T _A = +105°C
	Ісстмаін		Main Timer mode with CLKMC = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	285	325	μΑ	T _A = +25°C
				-	-	1055	μА	T _A = +105°C
	Ісстясн		RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)	-	160	210	μА	T _A = +25°C
				-	-	970	μА	T _A = +105°C
	Icctrcl		RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)	-	30	70	μΑ	T _A = +25°C
				-	-	820	μΑ	T _A = +105°C
	Ісстѕив		Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC stopped)	-	25	55	μΑ	T _A = +25°C
				-	-	800	μА	T _A = +105°C
Power supply current in Stop mode*3	Іссн	Vcc		-	20	55	μΑ	T _A = +25°C
			-	-	-	800	μΑ	T _A = +105°C
Flash Power Down current	ICCFLASHPD		-		36	70	μА	
Power supply current for active Low Voltage detector*4	Icclvd			-	5	-	μΑ	T _A = +25°C
			Low voltage detector enabled	-	-	12.5	μА	T _A = +105°C
Flash Write/	Iccflash		_	-	12.5	-	mA	T _A = +25°C
Erase current*5	ICCFLASH			-	-	20	mA	$T_A = +105^{\circ}C$

^{*1:} The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

When Flash is not in Power-down / reset mode, Iccflashpd must be added to the Power supply current.

^{*2:} The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

^{*3:} The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

^{*4}: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

^{*5:} When Flash Write / Erase program is executed, IccFLASH must be added to Power supply current.

14.3.2 Pin Characteristics

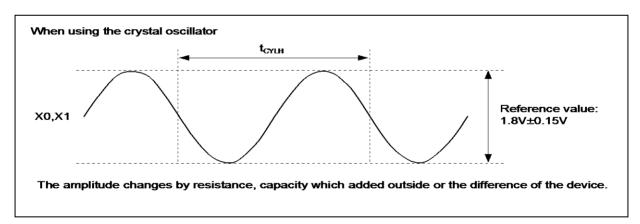
 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

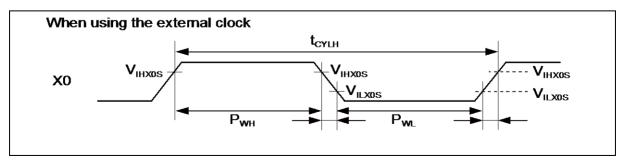
Parameter	r Symbol Pin Name		Conditions		Value		Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
	V	Port inputs	-	V _{CC} × 0.7	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	V _{IH} Pnn_m		-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	AUTOMOTIVE Hysteresis input
	V _{IHX0S}	X0	External clock in "Fast Clock Input mode"	VD × 0.8	-	VD	V	VD=1.8V±0.15V
"H" level input voltage	V _{IHX0} AS	X0A	External clock in "Oscillation mode"	V _{CC} × 0.8	-	V _{CC} + 0.3	V	
V _{IHR} RSTX		-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	CMOS Hysteresis input	
	V _{IHM} MD		-	V _{CC} - 0.3	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input
	VIL	Port inputs	-	V _{SS} - 0.3	-	V _{CC} × 0.3	V	CMOS Hysteresis input
	VIL	Pnn_m	-	V _{SS} - 0.3	-	V _{CC} × 0.5	V	AUTOMOTIVE Hysteresis input
	V _{ILX0S}	X0	External clock in "Fast Clock Input mode"	Vss	-	VD × 0.2	V	VD=1.8V±0.15V
"L" level input voltage	VILX0AS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{CC} × 0.2	V	
	VILR	RSTX	-	V _{SS} - 0.3	-	V _{CC} × 0.2	V	CMOS Hysteresis input
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input
VILD DEBUG I/F		DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input

_	_				Value			
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
	V _{OH4}	4mA type	4.5V ≤ (D)V _{CC} ≤ 5.5V I _{OH} = -4mA	(D)Vcc	_	(D)Vcc	V	
	V OH4	4IIIA type	2.7V ≤ (D)Vcc < 4.5V I _{OH} = -1.5mA	- 0.5		(D)VCC	v	
			4.5V ≤ DV _{CC} ≤ 5.5V I _{OH} = -52mA					T _A = -40°C
			$2.7V \le DV_{CC} < 4.5V$ $I_{OH} = -18mA$					
			$4.5V \le DV_{CC} \le 5.5V$ $I_{OH} = -39mA$					T _A = +25°C
"H" level output	V _{ОН30}	High Drive type*	$2.7V \le DV_{CC} < 4.5V$ $I_{OH} = -16mA$	DV _{CC} - 0.5	_	DVcc	V	
voltage		туре	$4.5V \le DV_{CC} \le 5.5V$ $I_{OH} = -32mA$	- 0.5				T _A = +85°C
			$2.7V \le DV_{CC} < 4.5V$ $I_{OH} = -14.5 \text{mA}$ $4.5V \le DV_{CC} \le 5.5V$					
			$I_{OH} = -30 \text{mA}$ 2.7V \leq DV_{CC} < 4.5V					T _A = +105°C
			I _{OH} = -14mA					
	V _{OH3}	3mA type	4.5V ≤ V _{CC} ≤ 5.5V I _{OH} = -3mA	Vcc	_	Vcc	V	
			$2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	- 0.5				
	V _{OL4}	4mA type	$4.5V \le (D)V_{CC} \le 5.5V$ $I_{OL} = +4mA$		_	0.4	V	
			$2.7V \le (D)V_{CC} < 4.5V$ $I_{OL} = +1.7mA$					
			$4.5V \le DV_{CC} \le 5.5V$ $I_{OL} = +52mA$ $2.7V \le DV_{CC} < 4.5V$					T _A = -40°C
			$I_{OL} = +22\text{mA}$ $4.5\text{V} \le D\text{V}_{CC} \le 5.5\text{V}$					
			$I_{OL} = +39mA$ 2.7V \leq DVcc < 4.5V					T _A = +25°C
"L" level output	V _{OL30}	High Drive	$I_{OL} = +18\text{mA}$ $4.5\text{V} \le D\text{V}_{CC} \le 5.5\text{V}$		-	0.5	V	
voltage		31	$I_{OL} = +32\text{mA}$ $2.7\text{V} \le D\text{V}_{CC} < 4.5\text{V}$					T _A = +85°C
			$I_{OL} = +14\text{mA}$ $4.5\text{V} \le D\text{V}_{CC} \le 5.5\text{V}$					
			$I_{OL} = +30\text{mA}$ $2.7\text{V} \le D\text{V}_{CC} < 4.5\text{V}$					T _A = +105°C
			I _{OL} = +13.5mA					
	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
	V _{OLD}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V	

		D' N	0		Value			5
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
Input leak			Vss < V _I < V _{CC} AVss < V _I < AV _{CC} , AVRH	- 1	-	+ 1	μА	Single port pin except high current output I/O for SMC
current		P08_m	DVss < Vi < DVcc AVss < Vi < AVcc, AVRH	- 3	-	+ 3	μА	
Total LCD leak current	Σ I _{ILCD}	All SEG/ COM pin	Vcc = 5.0V	-	0.5	10	μА	Maximum leakage current of all LCD pins
Internal LCD divide resistance	R _{LCD}	Between V3 and V2, V2 and V1, V1 and V0	V _{CC} = 5.0V	6.25	12.5	25	kΩ	
Pull-up resistance value	R _{PU}	Pnn_m	Vcc = 5.0V ±10%	25	50	100	kΩ	
Pull-down resistance value	R _{DOWN}	P08_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ	
Input capacitance	C _{IN}	Other than C, Vcc, Vss, DVcc DVss, AVcc, AVss, AVRH, P08_m	-	-	5	15	pF	
		P08_m	-	-	15	30	pF	

^{*:} In the case of driving stepping motor directly or high current outputs, set "1" to the bit in the Port High Drive Register (PHDRnn:HDx="1").

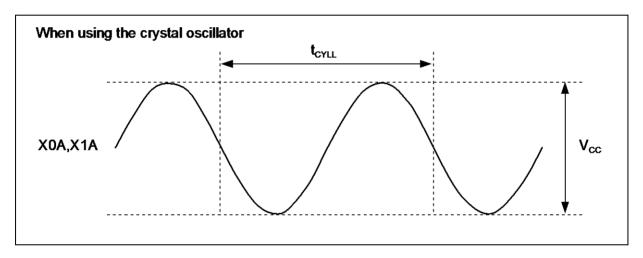


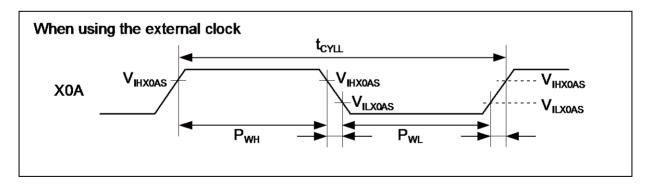

14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

(Vcc = AVcc = DVcc = 2.7V to 5.5V, VD=1.8V±0.15V, Vss = AVss = DVss = 0V, TA = -40°C to + 105°C)

Donomoton	Symbol	Pin		Value		Unit	Remarks	
Parameter	Symbol	Name	Min	Тур	Max	Unit		
		X0, X1	4	-	8	MHz	When using a crystal oscillator, PLL off	
Input frequency	fc		-	-	8	MHz	When using an opposite phase external clock, PLL off	
			4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on	
Input fraguancy	frci	X0	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off	
Input frequency			4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on	
Input clock cycle	tcylh	-	125	-	-	ns		
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns		





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

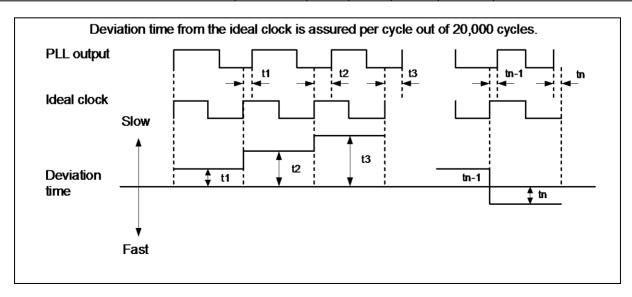
Parameter	Cumbal	Pin	Pin Conditions		Value		Unit	Remarks	
Parameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
Input frequency f _{CL}	V0.4	-	-	32.768	-	kHz	When using an oscillation circuit		
	X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock		
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	tcyll	-	-	10	-	-	μS		
Input clock pulse width	-	-	Pwh/tcyll, Pwl/tcyll	30	-	70	%		

14.4.3 Built-in RC Oscillation Characteristics

(V_{CC} = AV_{CC} = DV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40°C to + 105°C)

Dovometer	Symbol	Value			Unit	Domonto	
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	f	50	100	200	kHz	When using slow frequency of RC oscillator	
Clock frequency	†RC	1	2	4	MHz	When using fast frequency of RC oscillator	
RC clock stabilization		80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
time	trcstab	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

14.4.4 Internal Clock Timing

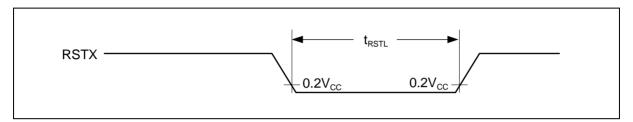

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

Percenter	Comple of	Va	Unit		
Parameter	Symbol	Min	Max	Oilit	
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz	
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	fclkb, fclkp1	-	32	MHz	
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz	

14.4.5 Operating Conditions of PLL

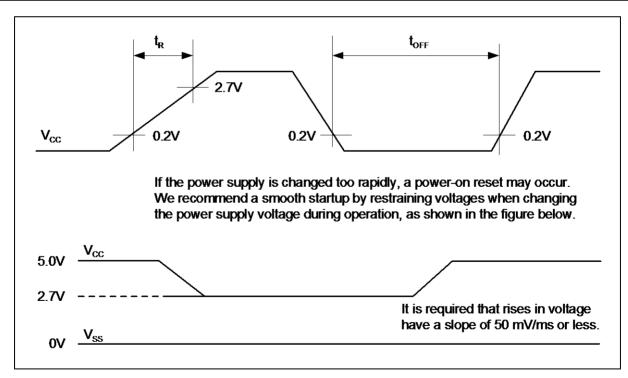
(Vcc = AVcc = DVcc = 2.7V to 5.5V, Vss = AVss = DVss = 0V, T_A = -40°C to + 105°C)

Davameter	Cumbal	Value			Unit	Remarks	
Parameter	Symbol	Min	Тур	Max	Unit	Neillai ks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	fclkvco	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	tpskew	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	



14.4.6 Reset Input

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$


Parameter	Symbol	Pin Name	Va	Unit		
Farameter	Symbol	Pili Name	Min	Max	Onit	
Reset input time	4	RSTX	10	-	μS	
Rejection of reset input time	trstl trstl	RSIA	1	-	μS	

14.4.7 Power-on Reset Timing

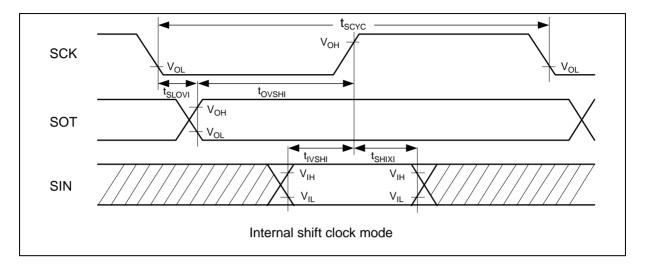
 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

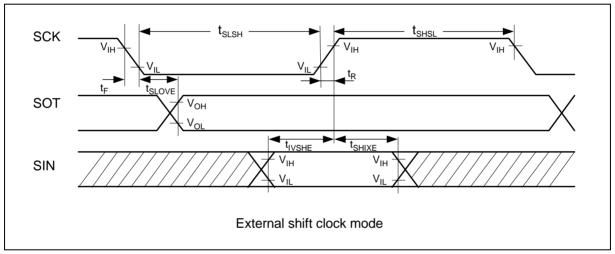
Parameter	Symbol	Pin Name		Value	Unit		
Parameter	Symbol	Pili Naille	Min	Тур	Max	Onit	
Power on rise time	t _R	Vcc	0.05	-	30	ms	
Power off time	t _{OFF}	Vcc	1	-	-	ms	

14.4.8 USART Timing

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C}, C_L = 50pF)$

Dorometer	Cumbal	Pin	Pin Conditions		/ _{cc} < 5.5V	2.7V ≤ V	/ _{CC} < 4.5V	l lmit
Parameter	Symbol	Name	Conditions	Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow \to SOT$ delay time	tslovi	SCKn, SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \rightarrow SCK \uparrow delay time$	t _{OVSHI}	SCKn, SOTn	Internal shift clock mode	N×t _{CLKP1} - 20 [*]	-	N×t _{CLKP1} - 30*	-	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKn, SINn	olook mode	tclkp1 + 45	-	t _{CLKP1} + 55	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXI}	SCKn, SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	tclkp1 + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCKn, SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHE}	SCKn, SINn	shift clock mode	t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	tshixe	SCKn, SINn		tclkp1 + 10	-	tclkp1 + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns


Notes:


- · AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "CY96600 series HARDWARE MANUAL".
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKn and SOTn_R is not guaranteed.
- *: Parameter N depends on tscyc and can be calculated as follows:
 - If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2
 - If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

Examples:

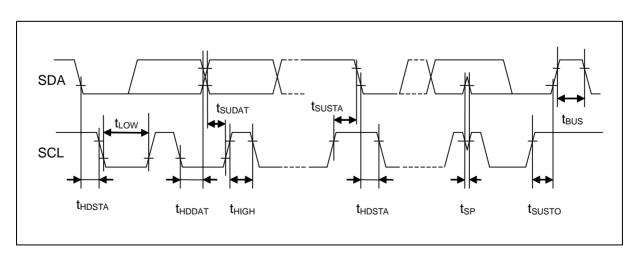
tscyc	N
4 × t _{CLKP1}	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
7 × tclkp1, 8 × tclkp1	4

14.4.9 External Input Timing

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter Symbol		Pin Name	Value		Unit	Remarks
Parameter	Symbol	Fill Name	Min	Max	Oilit	Remarks
		Pnn_m	2tclkp1 +200 (tclkp1= 1/fclkp1)*	-		General Purpose I/O
	tinh, t _{INL}	ADTG				A/D Converter trigger input
		TINn, TINn_R			ns	Reload Timer
Input pulse width		TTGn				PPG trigger input
		INn, INn_R				Input Capture
		INTn, INTn_R	200		20	External Interrupt
		NMI	200	-	ns	Non-Maskable Interrupt

^{*:} tclkp1 indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.


14.4.10 PC Timing

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

Beremeter	Complete	Conditions	Typical Mode		High-Speed Mode*4		Hmit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
SCL clock frequency	fscL		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	μs
SCL clock "L" width	tLOW		4.7	-	1.3	-	μS
SCL clock "H" width	thigh		4.0	-	0.6	-	μS
(Repeated) START condition setup time $SCL \uparrow \rightarrow SDA \downarrow$	tsusta		4.7	-	0.6	-	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	thddat	$C_L = 50pF,$ $R = (Vp/I_{OL})^{*1}$	0	3.45*2	0	0.9*3	μS
Data setup time SDA↓↑→ SCL↑	tsudat		250	-	100	-	ns
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	tsusto		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μs
Pulse width of spikes which will be suppressed by input noise filter	tsp	-	0	(1-1.5) × t _{CLKP1} *5	0	(1-1.5) × t _{CLKP1} *5	ns

 $^{^{*1}}$: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

^{*5:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

^{*2:} The maximum thddat only has to be met if the device does not extend the "L" width (tLOW) of the SCL signal.

^{*3:} A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250ns".

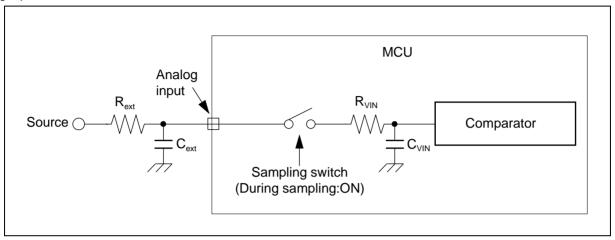
^{*4:} For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Donomoton	0	ol Pin Name	Value			11!1	Damanta	
Parameter	Symbol		Min	Тур	Max	Unit	Remarks	
Resolution	-	-	-	-	10	bit		
Total error	-	-	- 3.0	-	+ 3.0	LSB		
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB		
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB		
Zero transition voltage	Vот	ANn	Тур - 20	AV _{SS} + 0.5LSB	Typ + 20	mV		
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH - 1.5LSB	Typ + 20	mV		
Compare time*			1.0	-	5.0	μS	4.5V ≤ AV _{CC} ≤ 5.5V	
Compare time*	-	-	2.2	-	8.0	μS	2.7V ≤ AV _{CC} < 4.5V	
0	-	-	0.5	-	-	μS	4.5V ≤ AV _{CC} ≤ 5.5V	
Sampling time*			1.2	-	-	μS	2.7V ≤ AV _{CC} < 4.5V	
	IA		-	2.0	3.1	mA	A/D Converter active	
Power supply current	I _{AH}	AVcc	-	-	3.3	μА	A/D Converter not operated	
Reference power supply	I _R		-	520	810	μА	A/D Converter active	
current (between AVRH and AVss)	I _{RH}	AVRH	-	-	1.0	μА	A/D Converter not operated	
Analog input consoity	C	AN8, 9, 12, 13	-	-	15.5	pF	Normal outputs	
Analog input capacity	C _{VIN}	AN16 to 23	-	-	17.4	pF	High current outputs	
Analag impadansa	D	ANn	-	-	1450	Ω	4.5V ≤ AV _{CC} ≤ 5.5V	
Analog impedance	Rvin	ANII	-	-	2700	Ω	2.7V ≤ AV _{CC} < 4.5V	
Analog port input current	1	AN8, 9, 12, 13	- 1.0	-	+ 1.0	μΑ	AVss < Vain <	
(during conversion)	I _{AIN}	AN16 to 23 - 3.0 - + 3.0		+ 3.0	μА	AV _{CC} , AVRH		
Analog input voltage	V _{AIN}	ANn	AVss	-	AVRH	٧		
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV _{CC}	٧		
Variation between channels	-	ANn	-	-	4.0	LSB		


^{*:} Time for each channel.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance Rext, the board capacitance of the A/D converter input pin Cext and the AVcc voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and ADC are contained) R_{VIN}: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{\text{VIN}}) \times \text{C}_{\text{VIN}})$

• Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AV_{CC} \le 5.5V, 1.2\mu s \text{ for } 2.7V \le AV_{CC} < 4.5V)$

- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AVss| becomes smaller.

14.5.3 Definition of A/D Converter Terms

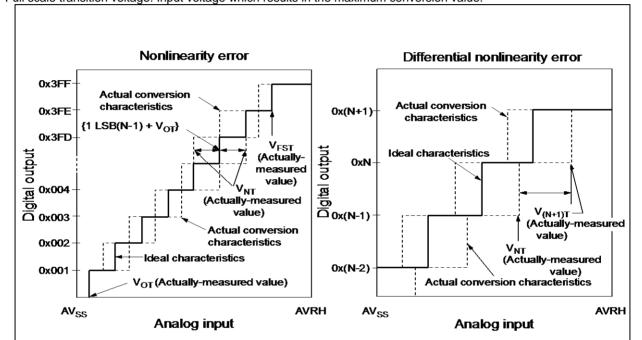
• Resolution : Analog variation that is recognized by an A/D converter.

• Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero

transition point (0b0000000000 \longleftrightarrow 0b0000000001) to the full-scale transition point

 $(0b11111111110 \longleftrightarrow 0b1111111111).$

• Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the


output code by 1LSB.

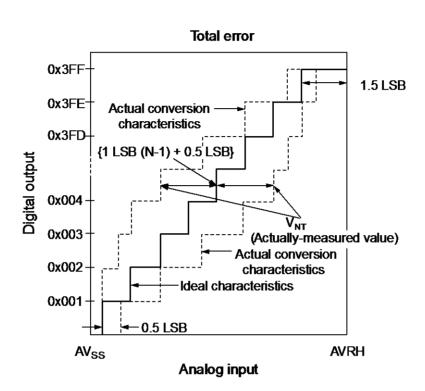
• Total error : Difference between the actual value and the theoretical value. The total error includes zero

transition error, full-scale transition error and nonlinearity error.

• Zero transition voltage : Input voltage which results in the minimum conversion value.

• Full scale transition voltage: Input voltage which results in the maximum conversion value.

Nonlinearity error of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB}$$
 [LSB]


Differential nonlinearity error of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]

$$1LSB = \frac{V_{FST} - V_{OT}}{1022}$$

N : A/D converter digital output value.

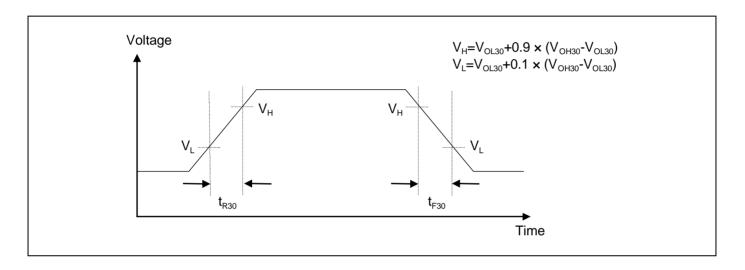
 $\begin{array}{lll} V_{OT} & : & Voltage \ at \ which \ the \ digital \ output \ changes \ from \ 0x000 \ to \ 0x001. \\ V_{FST} & : & Voltage \ at \ which \ the \ digital \ output \ changes \ from \ 0x3FE \ to \ 0x3FF. \\ V_{NT} & : & Voltage \ at \ which \ the \ digital \ output \ changes \ from \ 0x(N-1) \ to \ 0xN. \end{array}$

1LSB (Ideal value) =
$$\frac{AVRH - AV_{SS}}{1024}$$
 [V]

Total error of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + 0.5LSB\}}{1LSB}$$

N : A/D converter digital output value.

 V_{NT} : Voltage at which the digital output changes from 0x(N + 1) to 0xN.

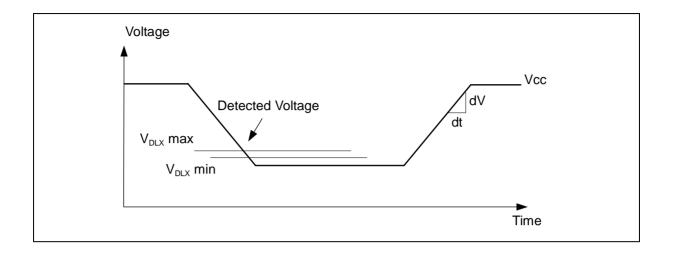

 V_{OT} (Ideal value) = $AV_{SS} + 0.5LSB[V]$ V_{FST} (Ideal value) = AVRH - 1.5LSB[V]

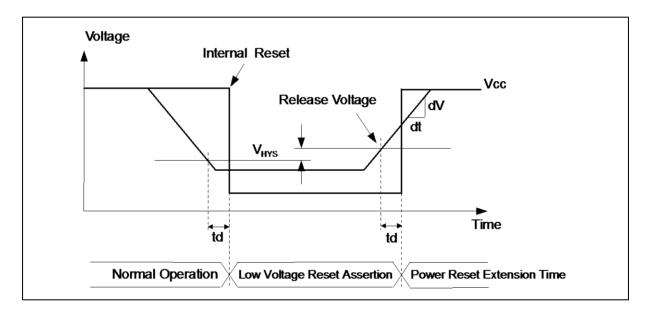
14.6 High Current Output Slew Rate

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Parameter Symbol Pin Name Conditions		Conditions	Value			Unit	Remarks
Farameter	Symbol Pin Name	Conditions	Min	Тур	Max	Unit	Remarks	
Output rise/fall time	t _{R30} , t _{F30}	P08_m	Outputs driving strength set to "30mA"	15	-	75	ns	C _L =85pF

14.7 Low Voltage Detection Function Characteristics


($V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40$ °C to + 105°C)


D	Oh al	0			11		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
	V _{DL0}	CILCR:LVL = 0000 _B	2.70	2.90	3.10	V	
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V	
	V _{DL2}	CILCR:LVL = 0010 _B	2.98	3.20	3.42	V	
Detected voltage*1	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate*2	dV/dt	-	- 0.004	-	+ 0.004	V/μs	
I lucata na aig suidth	M	CILCR:LVHYS=0	-	-	50	mV	
Hysteresis width	VHYS	CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	TLVDSTAB	-	-	-	75	μS	
Detection delay time	t _d	-	-	-	30	μS	


^{*1:} If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

^{*2}: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

14.8 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

Parameter		Conditions	Value			Unit	Remarks
		Conditions	Min	Тур	Max	Unit	Remarks
	Large Sector	-	-	1.6	7.5	s	
Sector erase time	Small Sector	-	-	0.4	2.1	S	Includes write time prior to internal erase.
	Security Sector	-	-	0.31	1.65	S	miornal orago.
Word (16-bit) write time		-	-	25	400	μS	Not including system-level overhead time.
Chip erase time		-	-	5.11	25.05	s	Includes write time prior to internal erase.

Note:

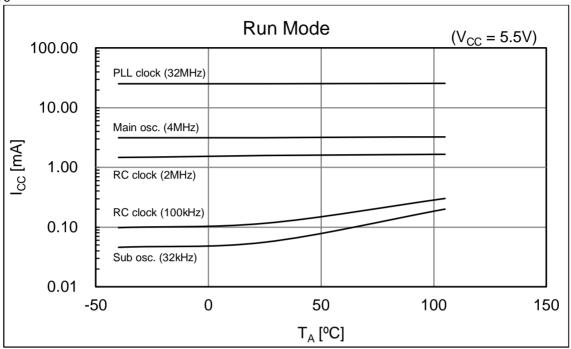
While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

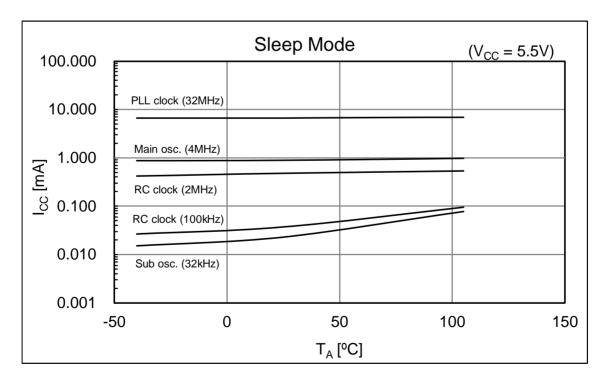
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})*1.

Write/Erase cycles and data hold time

Write/Erase Cycles (Cycle)	Data Hold Time (Year)
1,000	20 *2
10,000	10 * ²
100,000	5 ^{*2}

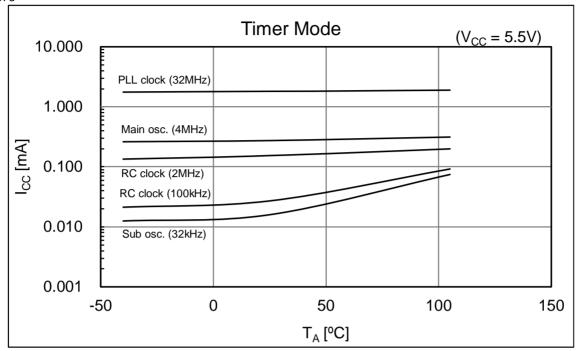
^{*1:} See "Low Voltage Detection Function Characteristics".

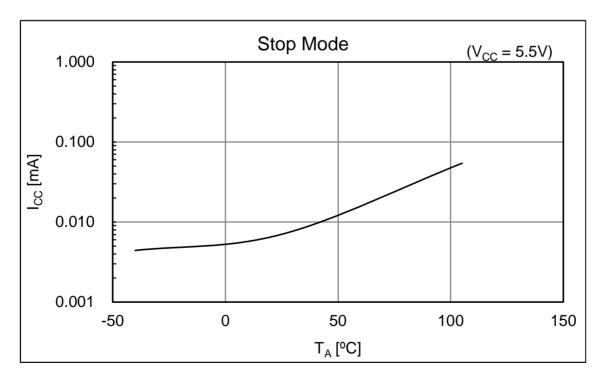

^{*2:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).



15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.


■CY96F675



■CY96F675

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings		
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz		
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz		
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz		
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz		
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz		
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)		
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)		
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		

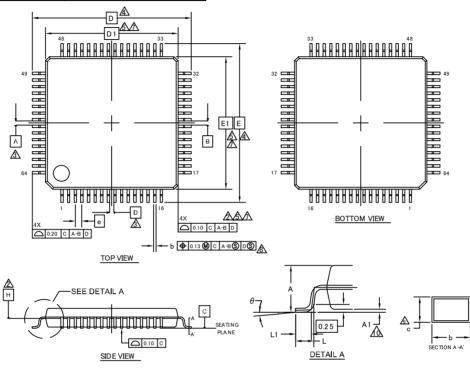
16. Ordering Information

MCU with CAN Controller

Part Number	Flash Memory	Package*
CY96F673RBPMC-GS-UJE1		64-pin plastic LQFP
CY96F673RBPMC-GS-UJE2	Flash A	(LQG064)
CY96F673RBPMC1-GS-UJE1	(96.5KB)	64-pin plastic LQFP (LQD064)
CY96F675RBPMC1-GS-UJE2	Flash A (160.5KB)	64-pin plastic LQFP (LQD064)

^{*:} For details about package, see "PACKAGE DIMENSION".

MCU without CAN Controller

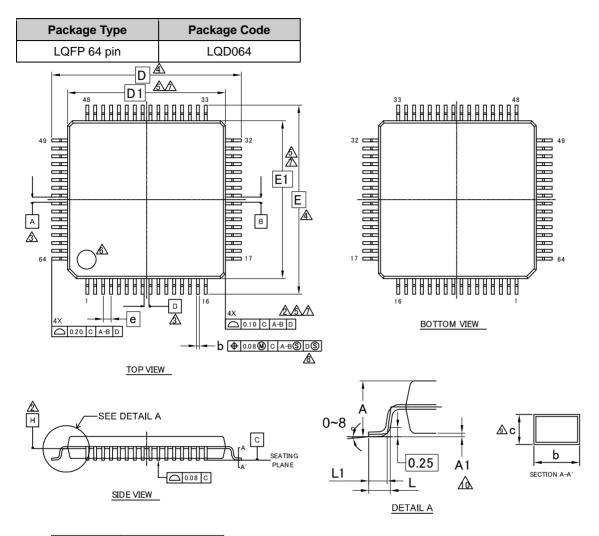

Part Number	Flash Memory	Package*
CY96F673ABPMC-GS-UJE2		64-pin plastic LQFP (LQG064)
CY96F673ABPMC1-GS-UJE1	Flash A (96.5KB)	
CY96F673ABPMC1-GS-UJE2	(90.3ND)	64-pin plastic LQFP (LQD064)
CY96F673ABPMC1-GS-UKE1		(1900)

^{*:} For details about package, see "PACKAGE DIMENSION".

17. Package Dimension

Package Type	Package Code
LQFP 64 pin	LQG064

CVMPOL	DIMENSION				
SYMBOL	MIN. NOM		MAX.		
Α			1.70		
A1	0.00		0.20		
b	0.27	0.32	0.37		
С	0.09 —		0.20		
D	14.00 BSC				
D1	12.00 BSC				
е	0	.65 BSC			
E	14	4.00 BSC			
E1	12.00 BSC				
L	0.45	0.60	0.75		
L1	0.30	0.50	0.70		
θ	0°	_	8°		


NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ADATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ADATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ⚠ TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13881 **

PACKAGE OUTLINE, 64 LEAD LQFP 12.0X12.0X1.7 MM LQG064 REV**

	DIMENSIONS		
SYMBOL	MIN.	NOM.	MAX.
Α	_	_	1.70
A1	0.00	_	0.20
b	0.15	_	0.2 7
С	0.09		0.20
D	12.00 BSC.		
D1	10.00 BSC.).
е	0.50 BSC		;
E	12.00 BSC.).
E1	10.00 BSC.		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- riangle DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
 AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION 6 DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 6 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-11499 **

PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev**

18. Major Changes

Page	Section	Change Results	
Revision 2	2.0		
4	FEATURES	Changed the description of "LCD Controller" On-chip drivers for internal divider resistors or external divider resistors	
		Internal divider resistors or external divider resistors	
		Changed the description of "External Interrupts" Interrupt mask and pending bit per channel →	
		Interrupt mask bit per channel	
9	PIN DESCRIPTION	Deleted Pin name WOT	
27 to 30	HANDLING PRECAUTIONS	Added a section	
33	HANDLING DEVICES	Changed the description in "11. SMC power supply pins" To avoid this, VCC must always be powered on before DVCC. → To avoid this, VCC must always be powered on before DVCC. DVcc/DVss must be applied when using SMC I/O pin as GPIO.	
35	ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	Changed the annotation *2 It is required that AVCC does not exceed VCC and that the voltage at the analog inputs does not exceed AVCC when the power is switched on. → It is required that AVCC does not exceed VCC, DVCC and that the voltage at the analog inputs does not exceed AVCC when the power is switched on.	
39	3. DC Characteristics (1) Current Rating	Changed the Conditions for ICCSRCH CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz, CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, Changed the Conditions for ICCSRCL CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz CLKS1/2 = CLKP1/2 = CLKRC = 100kHz CLKS1/2 = CLKP1/2 = CLKRC = 100kHz Changed the Conditions for ICCTPLL PLL Timer mode with CLKP1 = 32MHz PLL Timer mode with CLKPLL = 32MHz Changed the Value of "Power supply current in Timer modes" ICCTPLL Typ: 2480µA → 1800µA (TA = +25°C) Max: 2710µA → 2245µA (TA = +25°C) Max: 3955µA → 3140µA (TA = +105°C) Changed the Conditions for ICCTRCL RC Timer mode with CLKRC = 100kHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped) RC Timer mode with CLKRC = 100kHz	

Page	Section	Change Results
40	ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current Rating	Changed the annotation *2 Power supply for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current. → The current for "On Chip Debugger" part is not included. Added the description to annotation *2, *3 When Flash is not in Power-down / reset mode, Iccflashpd must be
	4.40 Objects statistics	added to the Power supply current.
52	4. AC Characteristics (10) I ² C timing	Added parameter, "Noise filter" and an annotation *5 for it
	· ,	Added tsp to the figure
54	 A/D Converter Accuracy and Setting of the A/D Converter Sampling Time 	Deleted the unit "[Min]" from approximation formula of Sampling time
57	6. High Current Output Slew Rate	Changed the condition (Vcc = AVcc = DVcc = 2.7V to 5.5V, VD=1.8V \pm 0.15V, Vss = AVss = DVss = 0V, T _A = -40°C to + 105°C) \rightarrow (Vcc = AVcc = DVcc = 2.7V to 5.5V, Vss = AVss = DVss = 0V, T _A = -40°C to + 105°C)
60	8. Flash Memory Write/Erase Characteristics	Changed the condition (Vcc = AVcc = DVcc = 2.7V to 5.5V, VD=1.8V±0.15V, Vss = AVss = DVss = 0V, TA = -40°C to + 105°C) → (Vcc = AVcc = DVcc = 2.7V to 5.5V, Vss = AVss = DVss = 0V, TA = -40°C to + 105°C) Changed the Note While the Flash memory is written, shutdown of the external power (Vcc) is prohibited. In the application system where the external power (Vcc) might be shut down while writing, be sure to turn the power off by using an external voltage detector. → While the Flash memory is written or erased, shutdown of the external power (Vcc) is prohibited. In the application system where the external power (Vcc) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
Revision 2	2.1	
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.

Page	Section	Change Results	
Rev. *B			
-	Marketing Part Numbers changed from an MB prefix to a CY prefix.		
6, 8, 62, 63, 64	Product Lineup Pin Assignment Ordering Information Package Dimension	Package description modified to JEDEC description. FPT-64P-M23 → LQG064 FPT-64P-M24 → LQD064	

Page	Section	Change Results
62	16. Ordering Information	Revised Marketing Part Numbers as follows:
		Before)
		MCU with CAN controller
		MB96F673RBPMC-GSE1
		MB96F673RBPMC-GSE2
		MB96F673RBPMC1-GSE1
		MB96F673RBPMC1-GSE2
		MB96F675RBPMC-GSE1
		MB96F675RBPMC-GSE2
		MB96F675RBPMC1-GSE1
		MB96F675RBPMC1-GSE2
		MCU without CAN controller
		MB96F673ABPMC-GSE1
		MB96F673ABPMC-GSE2
		MB96F673ABPMC1-GSE1
		MB96F673ABPMC1-GSE2
		MB96F675ABPMC-GSE1
		MB96F675ABPMC-GSE2
		MB96F675ABPMC1-GSE1
		MB96F675ABPMC1-GSE2
		After)
		MCU with CAN controller
		CY96F673RBPMC-GS-UJE1
		CY96F673RBPMC-GS-UJE2
		CY96F673RBPMC1-GS-UJE1
		CY96F675RBPMC1-GS-UJE2
		MCU without CAN controller
		CY96F673ABPMC-GS-UJE2
		CY96F673ABPMC1-GS-UJE1
		CY96F673ABPMC1-GS-UJE2
Rev. *C	1	
57	16. Ordering Information	Added Marketing Part Number as follows:
	_	CY96F673ABPMC1-GS-UKE1

Document History

Document Title: CY96670 Series, F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04703

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TORS	01/31/2014	Migrated to Cypress and assigned document number 002-04703. No change to document contents or format.
*A	5135634	TORS	02/18/2016	Updated to Cypress template.
*B	6002978	MIYH	12/22/2017	Updated Document Title to read as "CY96670 Series, F²MC-16FX 16-Bit Microcontroller". Replaced MB96670 Series with CY96670 Series in all instances across the document. Changed the prefix of all MPNs from MB to CY in all instances across the document. Updated Ordering Information. For details, please see 18. Major Changes.
*C	6349692	SHUS	10/15/2018	Updated Ordering Information. For details, please see 18. Major Changes.
*D	6600222	TORS	06/20/2019	Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cvpress.com/memory Microcontrollers cypress.com/mcu PS₀C cvpress.com/psoc Power Management ICs cypress.com/pmic **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb Wireless Connectivity

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cvpress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere

cypress.com/wireless

© Cypress Semiconductor Corporation, 2014-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-04703 Rev. *D Revised June 20, 2019 Page 64 of 64