

P-Channel 30-V (D-S) MOSFET

General Description

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low rDS(on)and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers,PCMCIA cards, cellular and cordless telephones.

Features

- Advanced high cell density Trench technology
- Fast switching speed
- Lower On-resistance
- 100% EAS Guaranteed
- Simple Drive Requirement

Product Summary

BVDSS	RDSON	ID
-30V	42mΩ	-19A

Applications

- DC-DC Converters
- Desktop PCs
- LED controller

TO-252/251 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	-30	V	
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current	-19	А	
I _D @T _C =100°C	Continuous Drain Current	-12	Α	
I _{DM}	Pulsed Drain Current ¹	-57	Α	
I _{AS}	Avalanche Current -19		Α	
P _D @T _C =25°C	Total Power Dissipation ²	30	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
T _J	Operating Junction Temperature Range -55 to 150		°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-ambient ²		71.4	°C/W
R _{θJC}	Thermal Resistance Junction -Case		1.67	°C/W

CMD20P03/CMU20P03

P-Channel 30-V (D-S) MOSFET

Electrical Characteristics (T_J=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25℃ , I _D =-250uA		-15		MV/℃
В	Statio Drain Source On Registance	V _{GS} =-10V, I _D =-10A			42	C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-5A			68	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1		-3	V
L	Drain Source Lookage Current	V _{DS} =-24V, V _{GS} =0V , T _J =25℃			-10	
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-24V, V_{GS} =0V , T_J =125 $^{\circ}\mathrm{C}$			-100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-8V, I _D =-9.5A		13		S
Qg	Total Gate Charge			15	21	
Q _{gs}	Gate-Source Charge	V _{DS} =-24V, V _{GS} =-5.0V, I _D =-19A		3.4		nC
Q_{gd}	Gate-Drain Charge			9.7		
$T_{d(on)}$	Turn-On Delay Time			16		
T _r	Rise Time	V_{DD} =-15V, V_{GS} =-5.0V, R_{G} =3.3 Ω		125		ne
$T_{d(off)}$	Turn-Off Delay Time	I _D =-19A		25		ns
T _f	Fall Time			68		
C _{iss}	Input Capacitance			700		
C _{oss}	Output Capacitance	V _{DS} =-25V, V _{GS} =0V , f=1MHz		110		pF
C _{rss}	Reverse Transfer Capacitance			80		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V _G =V _D =0V , Force Current			-19	Α
I _{SM}	Pulsed Source Current	-vg-vb-ov , Force Current			-57	Α
V_{SD}	Diode Forward Voltage ³	V_{GS} =0V , I_{S} =-19A , T_{J} =25 $^{\circ}$ C			-3.4	V

Note:

1. Pulse width limited by Max. junction temperature.

2.When surface mounted to an FR-4 board using the 0.5 sq.in. drain pad size.

3.Reflects typical values. Cpk = Absolute Value of Spec (Spec-AVG/3.516 uA).

This product has been designed and qualified for the counsumer market.

Cmos assumes no liability for customers' product design or applications.

Cmos reserver the right to improve product design ,functions and reliability wihtout notice.