Remote 8－bit I／O expander for $I^{2} C$－bus （compatible to PCF8574）

The device consists of an 8－bit quasi－bidirectional port and an I2C－bus interface．The HT8574B has a low current consumption and includes latched outputs with high current drive capability for directly driving LEDs．It also possesses an interrupt line（INT）which can be connected to the interrupt logic of the microcontroller．By sending an interrupt signal on this line， the remote I／O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I2C－bus．This means that the HT8574B can remain a simple slave device．The HT8574B and HT8574A versions differ only in their slave address as shown in Fig． 10.

1 FEATURES
－Operating supply voltage 2.5 to 6 V
－Low standby current consumption of $10 \mu \mathrm{Amaximum}$－
${ }^{2} \mathrm{C}$－bus to parallel port expander
－Open－drain interrupt output
－8－bit remote I／O port for the $\mathrm{I}^{2} \mathrm{C}$－bus
－Compatible with most microcontrollers
－Latched outputs with high current drive capability for directly driving LEDs
－Address by 3 hardware address pins for use of upto 8 devices（up to 16 with HT8574A）

2 GENERAL DESCRIPTION

The HT8574B is a silicon CMOS circuit．It provides general purpose remote I／O expansion for most microcontroller families via the two－line bidirectional bus （ $\mathrm{I}^{2} \mathrm{C}-$ bus）．

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
HT8574BNZ； HT8574ANZ	DIP16	plastic dual in－line package；16 leads（300 mil）	
HT8574BRWZ； HT8574ARWZ	WSO16	plastic small outline package；16 leads；body width 7．5 mm	B\＆A
HT8574BRTZ HT8574ARTZ	TSSOP20	plastic shrink small outline package；20 leads；body width 4．4 mm	B\＆A
HT8574BRSZ HT8574ARSZ	SSOP16	plastic shrink small outline package；16 leads；body width 3．9 mm	B\＆A
HT8574BRQZ HT8574ARQZ	QFN 16	plastic shrink small outline package；16 leads；body width 3 mm	B\＆A

4 BLOCK DIAGRAM

Fig． 1 Block diagram（pin numbers apply to DIP16，SSOP16 and WSO16 packages）．

5 PINNING

5.1 packages

SYMBOL	PIN	
A0	1	address input 0
A1	2	address input 1
A2	3	address input 2
P0	4	quasi－bidirectional I／O 0
P1	5	quasi－bidirectional I／O 1
P2	6	quasi－bidirectional I／O 2
P3	7	quasi－bidirectional I／O 3
VSS	8	supply ground
P4	9	quasi－bidirectional I／O 4
P5	10	quasi－bidirectional I／O 5
P6	11	quasi－bidirectional I／O 6
P7	12	quasi－bidirectional I／O 7
INT	13	interrupt output（active LOW）
SCL	14	serial clock line
SDA	15	serial data line
VDD	16	supply voltage

Fig． 2 Pin configuration（DIP16\＆WSO16\＆SSOP16）．

HTCSEMI
海天芯

5．2 TSSOP20 package

SYMBOL	PIN	
INT	1	interrupt output（active LOW）
SCL	2	serial clock line
n．c．	3	not connected
SDA	4	serial data line
V $_{\text {DD }}$	5	supply voltage
A0	6	address input 0
A1	7	address input 1
n．c．	8	not connected
A2	9	address input 2
P0	10	quasi－bidirectional I／O 0
P1	11	quasi－bidirectional I／O 1
P2	12	quasi－bidirectional I／O 2
n．c．	13	not connected
P3	14	quasi－bidirectional I／O 3
VSS	15	supply ground
P4	16	quasi－bidirectional I／O 4
P5	17	quasi－bidirectional I／O 5
n．c．	18	not connected
P6	19	quasi－bidirectional I／O 6
P7	20	quasi－bidirectional I／O 7

INT 1	\bigcirc_{20}	P7
SCL［2	19	P6
NC［3	18	NC
SDA［4	17	P5
$\mathrm{V}_{\mathrm{CC}} 5^{5}$	16	P4
A0 6	15	GND
A1 7	14	P3
NC［8	13	NC
A2 9	12	P2
P0 10	11	P1

Fig． 4 Pin configuration（TSSOP20）．

6 CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$－BUS

The $I^{2} \mathrm{C}$－bus is for 2－way，2－line communication between different ICs or modules．The two lines are a serial data line（SDA）and a serial clock line（SCL）．Both lines must be connected to a positive supply via a pull－up resistor when connected to the output stages of a device．Datatransfer may be initiated only when the bus is notbusy．

6．1 Bit transfer

One data bit is transferred during each clock pulse．The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals（see Fig．5）．

6．2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy．A HIGH－to－LOW transition of the data line，while the clock is HIGH is defined as the start condition（S）．
A LOW－to－HIGH transition of the data line while the clock is HIGH is defined as the stop condition（ P ）（seeFig．6）．

6．3 System configuration

A device generating a message is a＇transmitter＇，a device receiving is the＇receiver＇．The device that controls the message is the＇master＇and the devices which are controlled by the master are the＇slaves＇（see Fig．7）．

Fig． 5 Bit transfer．

Fig． 6 Definition of start and stop conditions．

Fig． 7 System configuration．

6．4 Acknowledge

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited．Each byte of eight bits is followed by one acknowledge bit（see Fig．8）．The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse．
A slave receiver which is addressed must generate an acknowledge after the reception of each byte．Also a master must generate an acknowledge after the reception
of each byte that has been clocked out of the slave transmitter．The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse，so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse，set－up and hold times must be taken into account．

A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave．In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition．

Fig． 8 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$－bus．

7 FUNCTIONAL DESCRIPTION

Fig． 9 Simplified schematic diagram of each I／O．

7．1 Addressing

For addressing see Figs 10， 11 and 12.

a．HT8574B．

b．HT8574A．

Fig． 10 HT8574B and HT8574A slave addresses．

Each of the HT8574B＇s eight I／Os can be independently used as an input or output．Input data is transferred from the port to the microcontroller by the READ mode（see Fig．12）．Output data is transmitted to the port by the WRITE mode （see Fig．11）．

－ـ」

$\begin{array}{r}\perp \mathrm{N} \\ \text { O＿} \\ \text { wo } \\ \\ \hline\end{array}$

7．2 Interrupt output

The HT8574B provides an open－drain output（INT）which can be fed to a corresponding input of the microcontroller （see Figs 13 and 14）．This gives these chips a type of master function which can initiate an action elsewhere in the system．

An interrupt is generated by any rising or falling edge of the port inputs in the input mode．After time tiv the signal INT is valid．
Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from or written to the port which has generated the interrupt．

Resetting occurs as follows：
－In the READ mode at the acknowledge bit after the rising edge of the SCL signal
－In the WRITE mode at the acknowledge bit afterthe HIGH－to－LOW transition of the SCL signal
－Interrupts which occur during the acknowledge clock pulse may be lost（or very short）due to the resetting of the interrupt during this pulse．

Each change of the I／Os after resetting will be detected and，after the next rising clock edge，will be transmitted as INT．Reading from or writing to another device does not affect the interrupt circuit．

7．3 Quasi－bidirectional I／Os

A quasi－bidirectional I／O can be used as an input or output without the use of a control signal for datadirection （see Fig．15）．At power－on the I／Os are HIGH．In this mode only a current source to $V_{D D}$ is active．An additional strong pull－up to $V_{D D}$ allows fast rising edges into heavily loaded outputs．These devices turn on when an output is written HIGH，and are switched off by the negative edge of SCL． The I／Os should be HIGH before being used asinputs．

Fig． 13 Application of multiple HT8574Bs with interrupt．

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System（IEC 60134）．

SYMBOL	PARAMETER	MIN．	MAX．	UNIT
V_{DD}	supply voltage	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-	± 20	mA
I_{O}	DC output current	-	± 25	mA
I_{DD}	supply current	-	± 100	mA
I_{SS}	supply current	-	± 100	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling．However it is good practice to take normal precautions appropriate to handling MOS devices（see＂Handling MOS devices＂）．

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ； $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ ； $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ ；unless otherwise specified．

SYMBOL	PARAMETER	CONDITIONS	MIN．	TYP．	MAX．	UNIT
Supply						
V_{DD}	supply voltage		2.5	－	6.0	V
I_{DD}	supply current	operating mode； $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$ ； no load； $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} ； $\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	－	40	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {stb }}$	standby current	standby mode； $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$ ； no load； $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	－	2.5	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power－on resetvoltage	$V_{D D}=6 \mathrm{~V}$ ；no load； $V_{I}=V_{D D}$ or $V_{S S}$ ；note 1	－	1.3	2.4	V
Input SCL；input／output SDA						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		－0．5	－	＋0．3V ${ }_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	－	$V_{D D}+0.5$	V
loL	LOW level output current	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	3	－	－	mA
lL	leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	－1	－	＋1	$\mu \mathrm{A}$
Ci	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {Ss }}$	－	－	7	pF

SYMBOL	PARAMETER	CONDITIONS	MIN．	TYP．	MAX．	UNIT
I／Os						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		－0．5	－	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	－	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{HL}(\text { max })}$	maximum allowed input current through protection diode	$\mathrm{V}_{1} \geq \mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {SS }}$	－	－	± 400	$\mu \mathrm{A}$
loL	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	10	25	－	mA
I_{OH}	HIGH level output current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\text {SS }}$	30	－	300	$\mu \mathrm{A}$
IOHt	transient pull－up current	HIGH during acknowledge （see Fig．15）； $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$ ； $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	－	－1	－	mA
C_{i}	input capacitance		－	－	10	pF
Co	output capacitance		－	－	10	pF
Port timing； $\mathrm{C}_{\mathrm{L}} \leq \mathbf{1 0 0} \mathrm{pF}$（see Figs 11 and 12）						
t_{pv}	output data valid		－	－	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}$	input data set－up time		0	－	－	$\mu \mathrm{S}$
th	input data hold time		4	－	－	$\mu \mathrm{S}$
Interrupt INT（see Fig．14）						
loL	LOW level output current	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	1.6	－	－	mA
IL	leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	－1	－	＋1	$\mu \mathrm{A}$
TIMING； $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$						
t_{iv}	input data valid time		－	－	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {ir }}$	reset delay time		－	－	4	$\mu \mathrm{S}$
Select inputs A0 to A2						
V_{IL}	LOW level input voltage		－0．5	－	$+0.3 \mathrm{~V}_{\text {DD }}$	V
V_{1+}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	－	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{LI}	input leakage current	pin at V_{DD} or $\mathrm{V}_{\text {SS }}$	－250	－	＋250	nA

Note

1．The Power－on reset circuit resets the $I^{2} \mathrm{C}$－bus logic at $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{P O R}$ and sets all I／Os to logic 1 （with current source to $V_{D D}$ ）．
$11 I^{2} \mathrm{C}$－BUS TIMING CHARACTERISTICS

SYMBOL	PARAMETER	MIN．	TYP．	MAX．	UNIT
$\mathrm{I}^{2} \mathrm{C}$－bus timing（see Fig．16；note 1）					
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	－	－	100	kHz
tsw	tolerable spike width on bus	－	－	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	－	－	$\mu \mathrm{s}$
tsu；STA	START condition set－up time	4.7	－	－	$\mu \mathrm{S}$
$\mathrm{t}_{\text {HD；}}$ STA	START condition hold time	4.0	－	－	$\mu \mathrm{S}$
tLow	SCL LOW time	4.7	－	－	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	－	－	$\mu \mathrm{S}$
tr_{r}	SCL and SDA rise time	－	－	1.0	$\mu \mathrm{S}$
tf_{f}	SCL and SDA fall time	－	－	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU；}}$ dat	data set－up time	250	－	－	ns
$\mathrm{t}_{\text {HD；} \mathrm{DAT}}$	data hold time	0	－	－	ns
tvd；DAT	SCL LOW to data out valid	－	－	3.4	$\mu \mathrm{S}$
tsu；STO	STOP condition set－up time	4.0	－	－	$\mu \mathrm{S}$

Note

1．All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $\mathrm{V}_{\text {IL }}$ and V_{IH} with an input voltage swing of V_{SS} to V_{DD} ．

12 PACKAGE OUTLINES

DIP16：plastic dual in－line package； 16 leads（ $\mathbf{3 0 0} \mathbf{m i l}$ ）

DIMENSIONS（inch dimensions are derived from the original mm dimensions）

UNIT	A max．	A_{1} min．	\mathbf{A}_{2} max.	b	b_{1}	b_{2}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	$\mathbf{M H}_{\mathbf{H}}$	w	$\underset{\max .}{\mathbf{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note
1．Plastic or metal protrusions of 0.25 mm maximum per side are not included．

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT38－4				¢	$\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$

WSOP16：plastic small outline package； 16 leads；body width 7.5 mm

SSOP16：plastic small outline package； 16 leads；body width 3.9 mm

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	-	-	1.75
A1	0.10	-	0.225
A2	1.30	1.40	1.50
A3	0.55	0.60	0.65
b	0.23	-	0.31
b1	0.22	0.25	0.28
c	0.20	-	0.24
c1	0.19	0.20	0.21
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	$0.635 B S C$		
h	0.25	-	0.50
L	0.50	0.65	0.80
L1	$1.05 R E F$		
	0	-	8

TSSOP20：plastic shrink small outline package； 20 leads；body width 4.4 mm

QFN16L（3＊3＊0．5）：plastic small outline package； 16 leads；body width 3
mm

BCTTGM VIEW

SIDE VIEW

Symbol	Dimensions In Milimeters		
	Min	Nom	Max
A	0.45	0.50	0.55
$A 1$	0	0.02	0.05
b	0.23	0.28	0.33
$b 1$	$0.20 R E F$		
C	$0.152 R E F$		
D	2.90	3.00	3.10
D	1.80	1.90	2.00
e	$0.50 B S C$		
$N e$	$1.50 B S C$		
$N d$	$1.50 B S C$		
E	2.90	3.00	3.10
$E 2$	1.80	1.90	2.00
L	0.25	0.30	0.35
K	0.20	0.25	0.30
h	0.20	0.25	0.30

